Skip to main content

Spectral Characteristics of Systems Which Undergo a Reversible Two-State Reaction

  • Chapter
Principles of Fluorescence Spectroscopy

Abstract

Many fluorophores undergo reactions in the excited state. Typical reactions include excimer and exciplex formation, protonation or deprotonation, and energy transfer. Absorption of a photon creates an altered electronic distribution in the fluorophore, which frequently changes its chemical or physical properties and may induce reactions with other components of the solution. In many cases the excited state process can be described by a simple two-state reaction scheme. In this chapter we describe in detail the spectral properties of this model. These properties provide a basis with which to compare the experimental data, and if appropriate, the theory for this model can be used to determine the kinetic and spectral constants of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birks, J. B., 1970,Photophysics of Aromatic Molecules, John Wiley and Sons, New York.

    Google Scholar 

  2. Birks, J. B. (Ed.), 1973,Organic Molecular Photophysics, Volumes 1 and 2, John Wiley and Sons, New York.

    Google Scholar 

  3. Ireland, J. F., and Wyatt, P. A. H., 1976, Acid-base properties of electronically excited states of organic molecules, Adv. Org. Chem. 12:131–221.

    CAS  Google Scholar 

  4. Badea, M. G., and Brand, L., 1979, Time-resolved fluorescence measurements, Methods Enzymol. 61:378–425.

    Article  CAS  Google Scholar 

  5. Lakowicz, J. R., 1980, Fluorescence-spectroscopic investigations of the dynamic properties of proteins, membranes, and nucleic acids, J. Biochem. Biophys. Methods 2:91–119.

    Article  CAS  Google Scholar 

  6. Galla, H. J., and Hartmann, W., 1980, Excimer-forming lipids in membrane research, Chem. Phys. Lipids 27:199–219.

    Article  CAS  Google Scholar 

  7. Vanderkooi, J. M., and Callis, J. B., 1974, Pyrene A probe of lateral diffusion in the hydrophobic region of membranes, Biochemistry 13:4000–4006.

    Article  CAS  Google Scholar 

  8. Steinberg, I. Z., 1971, Long-range nonradiative transfer of electronic excitation energy in proteins and polypeptides, Ann. Rev. Biochem. 40:83–114.

    Article  CAS  Google Scholar 

  9. Stryer, L., 1978, Fluorescence energy transfer as a spectroscopic ruler,Ann. Rev. Biochem. 47:819–846.

    Article  CAS  Google Scholar 

  10. Thomas, D. D., Carlsen, W. F., and Stryer, L., 1978, Fluorescence energy transfer in the rapid diffusion limit, Proc. Natl. Acad. Sci. 75:5746–5750.

    Article  CAS  Google Scholar 

  11. Katchalski-Katzir, E., and Steinberg, I. Z., 1981, Study of conformational and intramolecular mobility of polypeptides in solution by a novel fluorescence method, Ann. N.Y.Acad. Sci. 361:44–61.

    Article  Google Scholar 

  12. Veselova T. V., Cherkasov, A. S., and Shirokov, V. I., 1977, Luminescent properties of exciplexes of phthalimide derivatives with tetramethyldiaminodiphenylmethane, Opt. Spectrosc. 42:39–43.

    Google Scholar 

  13. Lakowicz, J. R., and Baiter, A., 1982a, Theory of phase-modulation fluorescence spectroscopy for excited state processes, Biophys. Chem., 16:99–115.

    Article  CAS  Google Scholar 

  14. Cherkasov, A. S., and Bazilevskaya, N. S., 1965, Excited dimers (excimers) of anthracene derivatives and concentration quenching of fluorescence, Akad. Nauk. USSR. Bull. Phys. Sci. 29:1288–1299.

    Google Scholar 

  15. Laws, J. R., and Brand, L., 1979, Analysis of two-state excited-state reactions. The fluorescence decay of 2-naphthol, J. Phys. Chem. 83:795–802.

    Article  CAS  Google Scholar 

  16. Gafni, A., and Brand, L., 1978, Excited state proton transfer reactions of acridine studied by nanosecond fluorometry, Chem. Phys. Lett. 58:346–350.

    Article  CAS  Google Scholar 

  17. Lakowicz, J. R., and Baiter, A., 1982, Analysis of excited state processes by phasemodulation fluorescence spectroscopy, Biophys. Chem. 16:117–132.

    Article  CAS  Google Scholar 

  18. Bakhshiev, N. G., Mazurenko, Yu. T., and Piterskaya, I. V., 1966, Luminescence decay in different portions of the luminescence spectrum of molecules in a viscous solution, Opt. Spectrosc. 21:307–309.

    Google Scholar 

  19. Rapp, W., Klingenberg, H. H., and Lessing, H. E., 1971, A kinetic model for fluorescence solvatochromism, Ber. Bunsenges. 75:883–886.

    CAS  Google Scholar 

  20. Lakowicz, J. R., and Baiter, A., 1982, Differential-wavelength deconvolution of timeresolved fluorescence intensities: A new method for the analysis of excited state processes, Biophys. Chem., 16:223–240.

    Article  CAS  Google Scholar 

  21. Ishie, T., Handa, T., and Matsunaga, S., 1977, A study on the mechanism of excimer formation through fluorescence quenching of isotatic and atactic polystyrenes and poly(p-methylsytrenes) in solution, Makromol. Chem. 178:2351–2336.

    Article  Google Scholar 

  22. Masuhara, H., Maeda, Y., Nakajo, H., Matoga, N., Tomita, K., Tatemitsu, H., Sokota, Y., and Misumi, S., 1981, Exciplex emission of intra- and intermolecular benzophenone and iVjN-dimethylaniline systems, J. Am. Chem. Soc. 103:634–640.

    Article  CAS  Google Scholar 

  23. Chandross, E. A., and Thomas, H. T., 1971, Intramolecular exciplex formation in napththylamines, Chem. Phys. Lett. 9:393–396.

    Article  CAS  Google Scholar 

  24. Kuzmin, M. G., and Guseva, L. N., 1969, Donor-acceptor complexes of singlet-excited states of aromatic hydrocarbons with aliphatic amines, Chem. Phys. Lett. 3:71–72.

    Article  CAS  Google Scholar 

  25. Ware, W. R., and Richter, H. P., 1968, Fluorescence quenching via charge transfer: The perylene-N/V-dimethylaniline system, J. Chem. Phys. 48:1595–1601.

    Article  CAS  Google Scholar 

  26. Knible, H., Rehm, D., and Weller, A., 1968, Intermediates and kinetics of fluorescence quenching by electron transfer, Ber. Bunsenges. 72:257–263.

    Google Scholar 

  27. Ware, W. R., Doemeny, L. T., and Nemzek, T. L., 1973, Deconvolution of fluorescence and phosphorescence decay curves by a least-squares method, J. Phys. Chem. 77:2038–2048.

    Article  CAS  Google Scholar 

  28. O’Connor, D. V., Ware, W. R., and Andre, J. C., 1979, Deconvolution of fluorescence decay curves. A critical comparison of techniques, J. Phys. Chem. 83:1333–1343.

    Article  Google Scholar 

  29. Spencer, R. D., and Weber, G., 1969, Measurement of subnanosecond fluorescence lifetimes with a cross-correlation phase fluorometer, Ann. N. Y. Acad. Sci. 158:361–376.

    Article  CAS  Google Scholar 

  30. Lakowicz, J. R., and Cherek, H. C., 1981, Phase-sensitive fluorescence spectroscopy: A new method to resolve fluorescence lifetimes or emission spectra of components in a mixture of fluorophores, J. Biochem. Biophys. Methods 5:19–35.

    Article  CAS  Google Scholar 

  31. Lakowicz, J. R., and Cherek, H., 1981, Resolution of heterogeneous fluorescence from proteins and amino acids by phase-sensitive detection of fluorescence, J. Biol. Chem. 246:6248–6353.

    Google Scholar 

  32. Lakowicz, J. R., and Baiter, A., 1982, Detection of the reversibility of an excited state reaction by phase-modulation fluorometry Chem. Phys. Lett. 92:117–121.

    Article  CAS  Google Scholar 

  33. Weber, G., 1976, in Excited States of Biological Molecules, J. B. Birks (Ed.), John Wiley and Sons, New York, pp. 363–374.

    Google Scholar 

  34. Bazilevskaya, N. S., Limareva, L. A., Cherkasov, A. S., and Shirokov, V. I., 1965, Fluorometric determination of the lifetime of the excited state in excited dimers (excimers) of anthracene derivatives, Opt. Spectrosc. 18:202–203.

    Google Scholar 

  35. Veselova, T. V., Limareva, L. A., Cherkasov, A. S., and Shirokov, V. I., 1965, Fluorometric study of the effect of solvent on the fluorescence spectrum of 3-amino-N-methylphthalimide, Opt. Spectrosc. 19:39–43.

    Google Scholar 

  36. Lakowicz, J. R., and Cherek, H., 1980, Dipolar relaxation in proteins on the nanosecond timescale observed by wavelength-resolved phase fluorometry of tryptophan fluorescence, J. Biol. Chem. 225:831–834.

    Google Scholar 

  37. Ross, J. B. A., Schmidt, C. J., and Brand, L., 1981, Time-resolved fluorescence of the two tryptophans in horse liver alcohol dehydrogenase, Biochemistry 20:4369–4377.

    Article  CAS  Google Scholar 

  38. Cockle, S. A., and Szabo, A. G., 1981, Time-resolved fluorescence spectra of tryptophan in monomeric glucagon, Photochem. Photobiol. 34:23–27.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Lakowicz, J.R. (1983). Spectral Characteristics of Systems Which Undergo a Reversible Two-State Reaction. In: Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7658-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7658-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7660-0

  • Online ISBN: 978-1-4615-7658-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics