Skip to main content

High Temperature Dynamic Behavior of Silicon Surfaces Studied by STM

  • Chapter
In-Situ Microscopy in Materials Research
  • 298 Accesses

Abstract

After the invention of the scanning tunneling microscope (STM) and confirmation of its usefulness in observing the surface atomic structures at an atomic-scale resolution [1–3], STM has been regarded as an essential tool in various fields such as surface physics, surface chemistry, crystal growth, and silicon technology [4]. Its field of application is still expanding to the fields of, for example, biology, tribology, electrochemistry, due to its performance capabilities in air and liquid as well as in ultrahigh vacuum (UHV). Moreover, its range of operating temperature is also expanding down to temperatures as low as liquid He-3 (0.3 K) temperature [5] and up to temperatures as high as 950 °C [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Binnig and H. Rohrer: Helv. Phys. Acta 55 (1982) 726.

    CAS  Google Scholar 

  2. G. Binnig, H. Rohrer, C. Gerber and E. Weibel: Phys. Rev. Lett. 50 (1983) 120.

    Article  CAS  Google Scholar 

  3. G. Binnig and H. Rohrer, Surf. Sci. 126 (1983) 236.

    Article  CAS  Google Scholar 

  4. For example, R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy (Cambridge University Press, 1994), and references therein.

    Google Scholar 

  5. H.F. Hess, R.B. Robinson and J.V. Waszczak: Phys. Rev. Lett. 64 (1990) 2711.

    Article  Google Scholar 

  6. H. Tokumoto and M. Iwatsuki: Jpn. J. Appl. Phys. 32 (1993) 1368, and references therein.

    Article  CAS  Google Scholar 

  7. B.S. Swartzentruber: Phys. Rev. Lett. 76 (1996) 459.

    Article  CAS  Google Scholar 

  8. Y. Morita, K. Miki and H. Tokumoto: Surf. Sci. Lett. 298 (1993) L163

    Article  CAS  Google Scholar 

  9. Y. Morita, K. Miki and H. Tokumoto: Surf. Sci. 525 (1995) 21.

    Article  Google Scholar 

  10. K. Miki, Y. Morita, H. Tokumoto, T. Sato, M. Iwatsuki, M. Suzuki and T. Fukuda: Ultramicroscopy 42–44 (1992) 851.

    Article  Google Scholar 

  11. H. Tokumoto, K. Miki, Y. Morita, T. Sato, M. Iwatsuki, M. Suzuki and T. Fukuda: Ultramicroscopy 42–44 (1992) 816

    Article  Google Scholar 

  12. K. Miki and H. Tokumoto: Nanotechnology 3 (1992) 142.

    Article  Google Scholar 

  13. M. Iwatsuki and S. Kitamura: JEOL News 28E (1990) 24.

    Google Scholar 

  14. R.J. Culbertson, L.C. Feldman, P.J. Silverman and R. Haight: J. Vac. Sci. Technol. 20 (1982) 868.

    Article  CAS  Google Scholar 

  15. K. Oura, M. Naitoh, F. Shoji, J. Yamane, K. Umezawa and T. Hanawa: Nucl. Instrum. Methods Phys. Res. B45 (1990) 199.

    CAS  Google Scholar 

  16. G. Schulze and M. Henzler: Surf. Sci. 124 (1983) 336.

    Article  CAS  Google Scholar 

  17. B.G. Kœhler, C.H. Mak, D.A. Arthur, P.A. Coon and S.M. George: J. Chem. Phys. 89 (1988) 1709.

    Article  Google Scholar 

  18. S.K. Kulkarni, S.M. Gates, C.M. Greenlief and H.H. Sawin: Surf. Sci. 239 (1990) 26.

    Article  CAS  Google Scholar 

  19. G.A. Reider, U. Höfer and T.F. Heinz: J. Chem. Phys. 94 (1991) 4080.

    Article  CAS  Google Scholar 

  20. J. Wintterlin and Ph. Avouris: Surf. Sci. Lett. 286 (1993) 529.

    Article  Google Scholar 

  21. G.W. Trucks, K. Raghavachari, G.S. Higashi and Y.J. Chabal, Phys. Rev. Lett. 65 (1990) 504.

    Article  CAS  Google Scholar 

  22. J. J. Lander: Surf. Sci. 1 (1964) 125.

    Article  CAS  Google Scholar 

  23. S. Ino: Jpn. J. Appl. Phys. 16 (1977) 891.

    Article  CAS  Google Scholar 

  24. K. Takayanagi, Y. Tanishiro, S. Takahashi and M. Takahashi: J. Vac. Sci. & Technol. A3 (1985) 1502.

    Google Scholar 

  25. N. Osakabe, Y. Tanishiro, K. Yagi and G. Honjo: Surf. Sci. 109 (1981) 353.

    Article  CAS  Google Scholar 

  26. W. Telieps and E. Bauen: Surf. Sci. 162 (1985) 163.

    Article  CAS  Google Scholar 

  27. M. Mundschau, E. Bauer, W. Telieps and W. Swiech: Phil. Mag. 61 (1990) 257.

    Article  CAS  Google Scholar 

  28. G. Quen and D. J. Chadi: J. Vac. Sci. Technol. B4, 1079 (1989).

    Google Scholar 

  29. M. Fujita, H. Nagayoshi, and A. Yoshimori: Surf. Sci. 242, 229 (1991).

    Article  CAS  Google Scholar 

  30. Y. Sakamoto and J. Kanamori: Surf. Sci. 242,119 (1991).

    Article  CAS  Google Scholar 

  31. J. Kanamori and Y. Sakamoto: Surf. Sci. 242, 102 (1991).

    Article  CAS  Google Scholar 

  32. H. Iwasaki, S. Hasegawa, M. Akizuki, Sung-Te Li, S. Nakamura, and J. Kanamori: J. Phys. Soc. Jpn. 56, 3425 (1987).

    Article  CAS  Google Scholar 

  33. S. Kohmoto and A. Ichmiya: Surf. Sci. 223, 400 (1989).

    Article  CAS  Google Scholar 

  34. H. Yasunaga, Y. Kubo and N. Okuyama: Jpn. J. Appl. Phys. 25 (1986) L400.

    Article  CAS  Google Scholar 

  35. J.M. Zhou, S. Baba and A. Kinbara: Thin Solid Films 98 (1982) 109.

    Article  CAS  Google Scholar 

  36. T. Doi and M. Ichikawa,: J. Cryst. Growth 95 (1989) 468.

    Article  CAS  Google Scholar 

  37. T. Abukawa, S. Kono and T. Sakamoto. Jpn. J. Appl. Phys. 28 (1989) L303.

    Article  CAS  Google Scholar 

  38. H. Kahata and K. Yagi: Jpn. J. Appl. Phys. 28 (1989) L858.

    Article  CAS  Google Scholar 

  39. A.V. Latyshev, A.L. Aseev, A.B. Krasilnikov and S.I. Stenin: Surf. Sci. 213 (1989) 157.

    Article  CAS  Google Scholar 

  40. Y. Homma, R. J. McClelland and H. Hibino: Jpn. J. Appl. Phys. 29 (1990) L2254.

    Article  CAS  Google Scholar 

  41. H. Tokumoto, K. Miki, H. Murakami and K. Kajimura: J. Vac. Sci. & Technol. B9 (1991) 699.

    Article  Google Scholar 

  42. R.J. Phaneuf, E.D. Williams and N.C. Bartelt: Phys. Rev. B38 (1988) 1984.

    Google Scholar 

  43. P.A. Bennett and M.W. Webb: Surf. Sci. 104 (1981) 74.

    Article  CAS  Google Scholar 

  44. E.D. Williams and N.C. Bartelt: Science 251 (1991) 393.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tokumoto, H. (1997). High Temperature Dynamic Behavior of Silicon Surfaces Studied by STM. In: Gai, P.L. (eds) In-Situ Microscopy in Materials Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6215-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6215-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9989-6

  • Online ISBN: 978-1-4615-6215-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics