Skip to main content

Hydroxysteroid Dehydrogenases

New Drug Targets of the Aldo-Keto Reductase Superfamily

  • Chapter
Enzymology and Molecular Biology of Carbonyl Metabolism 6

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 414))

Abstract

Mammalian hydroxysteroid dehydrogenases (HSDs) regulate the occupancy of steroid hormone receptors by interconverting active hormones with their cognate inactive metabolites. In this manner, they work as molecular switches that control steroid hormone action. Specificity is achieved by reducing carbonyl groups to hydroxyl groups in a positional and stereoselective manner on the steroid nucleus or steroid side-chain. cDNA cloning indicates that HSDs belong to two distinct protein phylogenies: the aldo-keto reductase (AKR) superfamily (Pawlowski et al., 1991; Lacy et al., 1993; Warren et al., 1993; Mao et al., 1994) and the short-chain dehydrogenase/reductase family (SDR, formerly known as the short-chain alcohol dehydrogenase family) (Krozowski, 1994; Jörnvall et al., 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andersson, S., Geissler, W.M., Patel, S. and Wu, L., 1995, The molecular biology of androgenic 17β-hydroxysteroid dehydrogenases, J. Steroid. Biochem. Mol. Biol. 53:37–39.

    Article  PubMed  CAS  Google Scholar 

  • Askonas, L.J., Ricigliano, J.W. and Penning, T.M., 1991, The kinetic mechanism catalysed by homogeneous rat liver 3α-hydroxysteroid dehydrogenase. Evidence for binary and ternary dead-end complexes containing non-steroidal anti-inflammatory drugs, Biochem.J. 278:835–841.

    PubMed  CAS  Google Scholar 

  • Bennett, M.J., Schlegel, B.P., Jez, J.M., Penning, T.M. and Lewis, M., 1996, Structure of 3α-hydroxysteroid/dihydrodiol dehydrogenase complexed with NADP+, Biochemistry, In Press

    Google Scholar 

  • Chen, Z., Jiang, J.C., Lin, Z.G., Lee, W.R., Baker, M.E. and Chang, S.H., 1993, Site-specific mutagenesis of Drosophila alcohol dehydrogenase: evidence for involvement of tyrosine-152 and lysine-156 in catalysis, Biochemistry 32:3342–3346.

    Article  PubMed  CAS  Google Scholar 

  • Deyashiki, Y., Ohshima, K., Nakanishi, M., Sato, K., Matsuura, K. and Hara, A., 1995, Molecular cloning and characterization of mouse estradiol 17β-dehydrogenase (A-specific), a member of the aldoketoreductase family, J Biol Chem 270:10461–10467.

    Article  PubMed  CAS  Google Scholar 

  • Dufort, I., Soucy, P., Zhang, Y. and Luu-The, V., 1995, Cloning and characterization of human type 2 3α-hydroxysteroid dehydrogenase from human prostatic cDNA library, Proceedings Fifth International Congress on Hormones and Cancer, Abstract, 190.

    Google Scholar 

  • Ensor, C.M. and Tai, H.H., 1991, Site-directed mutagenesis of the conserved tyrosine 151 of human placental NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase yields a catalytically inactive enzyme, Biochem.Biophys.Res.Commun. 176:840–845.

    Article  PubMed  CAS  Google Scholar 

  • Funder, J.W., Pearce, P.T., Smith, R. and Smith, A.I., 1988, Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated, Science 242:583–585.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, D., Erman, M., Wawrzak, Z., Duax, W.L. and Pangborn, W., 1994b, Mechanism of inhibition of 3α,20β-hydroxysteroid dehydrogenase by a licorice-derived steroidal inhibitor, Structure 2:973–980.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, D., Pletnev, V.Z., Zhu, D.W., Wawrzak, Z., Duax, W.L., Pangborn, W., Labrie, F. and Lin, S.X., 1995, Structure of human estrogenic 17b-hydroxysteroid dehydrogenase at 2.20 A resolution, Structure 3:503–513.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, D., Wawrzak, Z., Weeks, C.M., Duax, W.L. and Erman, M., 1994a, The refined three-dimensional structure of 3α,20β-hydroxysteroid dehydrogenase and possible roles of the residues conserved in short-chain dehydrogenases, Structure 2:629–640.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, D., Weeks, C.M., Grochulski, P., Duax, W.L., Erman, M., Rimsay, R.L. and Orr, J.C., 1991, Three-dimensional structure of holo 3α,20β-hydroxysteroid dehydrogenase: a member of a short-chain dehydrogenase family, Proc. Natl. Acad. Sci. U.S.A. 88:10064–10068.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, D.H., Bohren, K.M., Ringe, D., Petsko, G.A. and Gabbay, K.H., 1994, An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate, cacodylate, and glucose 6-phosphate, Biochemistry 33:2011–2020.

    Article  PubMed  CAS  Google Scholar 

  • Hoog, S.S., Pawlowski, J.E., Alzari, P.M., Penning, T.M. and Lewis, M., 1994, Three-dimensional structure of rat liver 3α-hydroxysteroid/dihydrodiol dehydrogenase: a member of the aldo-keto reductase superfamily, Proc. Natl. Acad. Sci. U.S.A. 91:2517–2521.

    Article  PubMed  CAS  Google Scholar 

  • Isaacs, J.T., 1983, Changes in dihydrotestosterone metabolism and the development of benign prostatic hyperplasia in the aging beagle, J. Steroid. Biochem. 18:749–757.

    Article  PubMed  CAS  Google Scholar 

  • Jacobi, G.H., Moore, R.J. and Wilson, J.D., 1977, Characterization of the 3α-hydroxysteroid dehydrogenase of dog prostate, J. Steroid. Biochem. 8:719–723.

    Article  PubMed  CAS  Google Scholar 

  • Jacobi, G.H., Moore, R.J. and Wilson, J.D., 1978, Studies on the mechanism of 3α-androstanediol-induced growth of the dog prostate, Endocrinology 102:1748–1758.

    Article  PubMed  CAS  Google Scholar 

  • Jez, J.M. and Penning, T.M., 1995, The role of tryptophans in ligand recognition by rat liver 3α-hydroxysteroid dehydrogenase, Int. Symposium on DHEA Transformation into Androgens and Estrogens in Target Tissues: Intracrinology, Abstract, 11.

    Google Scholar 

  • Jörnvall, H., Persson, B., Krook, M., Atrian, S., Gonzalez-Duarte, R., Jeffery, J. and Ghosh, D., 1995, Short-chain dehydrogenases/reductases (SDR), Biochemistry 34:6003–6013.

    Article  PubMed  Google Scholar 

  • Khanna, M., Qin, K.N., Wang, R.W. and Cheng, K.C., 1995, Substrate specificity, gene structure, and tissue-specific distribution of multiple human 3α-hydroxysteroid dehydrogenases, J Biol Chem 270:20162–20168.

    Article  PubMed  CAS  Google Scholar 

  • Krozowski, Z., 1994, The short-chain alcohol dehydrogenase superfamily: variations on a common theme, J. Steroid. Biochem. Mol. Biol. 51:125–130.

    Article  PubMed  CAS  Google Scholar 

  • Krozowski, Z.S., Provencher, P.H., Smith, R.E., Obeyesekere, V.R., Mercer, W.R. and Albiston, A.L., 1994, Isozymes of 11β-hydroxysteroid dehydrogenase: which enzyme endows mineralocorticoid specificity?, Steroids 59:116–120.

    Article  PubMed  CAS  Google Scholar 

  • Lacy, W.R., Washenick, K.J., Cook, R.G. and Dunbar, B.S., 1993, Molecular cloning and expression of an abundant rabbit ovarian protein with 20α-hydroxysteroid dehydrogenase activity [published erratum appears in Mol Endocrinol 1993 Sep;7(9): 1239], Mol.Endocrinol. 7:58–66.

    Article  PubMed  CAS  Google Scholar 

  • Liao, S., Liang, T., Fang, S., Castaneda, E. and Shao, T.C., 1973, Steroid structure and androgenic activity. Specificities involved in the receptor binding and nuclear retention of various androgens, J.Biol.Chem. 248:6154–6162.

    PubMed  CAS  Google Scholar 

  • Lin, H.-K., Jez, J.M. and Penning, T.M., 1995, Cloning of a human prostate cDNA with high sequence identity to rat liver 3α-hydroxysteroid/dihydrodiol dehydrogenase, Int. Symposium on DHEA Transformation into Androgens and Estrogens in Target Tissues: Intracrinology, Abstract, 37.

    Google Scholar 

  • Mao, J., Duan, W.R., Albarracin, C.T., Parmer, T.G. and Gibori, G., 1994, Isolation and characterization of a rat luteal cDNA encoding 20a-hydroxysteroid dehydrogenase, Biochem. Biophys. Res. Commun. 201:1289–1295.

    Article  PubMed  CAS  Google Scholar 

  • Mercer, W.R. and Krozowski, Z.S., 1992, Localization of an 11β-hydroxysteroid dehydrogenase activity to the distal nephron. Evidence for the existence of two species of dehydrogenase in the rat kidney, Endocrinology 130:540–543.

    Article  PubMed  CAS  Google Scholar 

  • Monder, C., Stewart, P.M., Lakshmi, V., Valentino, R., Burt, D. and Edwards, C.R., 1989, Licorice inhibits corticosteroid 11β-dehydrogenase of rat kidney and liver: in vivo and in vitro studies, Endocrinology 125:1046–1053.

    Article  PubMed  CAS  Google Scholar 

  • Mune, T., Rogerson, F.M., Nikkila, H., Agarwal, A.K. and White, P.C., 1995, Human hypertension caused by mutations in the kidney isozyme of 11β-hydroxysteroid dehydrogenase, Nat.Genet. 10:394–399.

    Article  PubMed  CAS  Google Scholar 

  • Obeid, J. and White, P.C., 1992, Tyr-179 and Lys-183 are essential for enzymatic activity of 11β-hydroxysteroid dehydrogenase, Biochem. Biophys. Res. Commun. 188:222–227.

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski, J.E., Huizinga, M. and Penning, T.M., 1991, Cloning and sequencing of the cDNA for rat liver 3α-hydroxysteroid/dihydrodiol dehydrogenase, J. Biol. Chem. 266:8820–8825.

    PubMed  CAS  Google Scholar 

  • Pawlowski, J.E. and Penning, T.M., 1994, Overexpression and mutagenesis of the cDNA for rat liver 3α-hydroxysteroid/dihydrodiol dehydrogenase. Role of cysteines and tyrosines in catalysis, J. Biol. Chem. 269:13502–13510.

    PubMed  CAS  Google Scholar 

  • Penning, T.M., Mukharji, I., Barrows, S. and Talalay, P., 1984, Purification and properties of a 3α-hydroxysteroid dehydrogenase of rat liver cytosol and its inhibition by anti-inflammatory drugs, Biochem. J. 222:601–611.

    PubMed  CAS  Google Scholar 

  • Poutanen, M., Miettinen, M. and Vihko, R., 1993, Differential estrogen substrate specificities for transiently expressed human placental 17β-hydroxysteroid dehydrogenase and an endogenous enzyme expressed in cultured COS-m6 cells, Endocrinology 133:2639–2644.

    Article  PubMed  CAS  Google Scholar 

  • Schlegel, B., Pawlowski, J.E., Hu, Y., Scolnick, D.M., Covey, D.F. and Penning, T.M., 1994, Secosteroid mechanism-based inactivators and site-directed mutagenesis as probes for steroid hormone recognition by 3α-hydroxysteroid dehydrogenase, Biochemistry 33:10367–10374.

    Article  PubMed  CAS  Google Scholar 

  • Schlegel, B. and Penning, T., 1995, Site-directed mutagenesis of the catalytic triad of rat liver 3α-hydroxysteroid dehydrogenase, Int. Symposium on DHEA Transformation into Androgens and Estrogens in Target Tissues: Intracrinology, Abstract, 10.

    Google Scholar 

  • Stewart, P.M., Wallace, A.M., Valentino, R., Burt, D., Shackleton, C.H. and Edwards, C.R., 1987, Mineralocorticoid activity of liquorice: 11β-hydroxysteroid dehydrogenase deficiency comes of age, Lancet 2:821–824.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, J.F., III Jr. and Stambaugh, R.L., 1974, Induction of 20α-hydroxysteroid dehydrogenase in rat corpora lutea of pregnancy by prostaglandin F-2α, Prostaglandins 5:73–85.

    PubMed  CAS  Google Scholar 

  • Taurog, J.D., Moore, R.J. and Wilson, J.D., 1975, Partial characterization of the cytosol 3α-hydroxysteroid: NAD(P)+oxidoreductase of rat ventral prostate, Biochemistry 14:810–817.

    Article  PubMed  CAS  Google Scholar 

  • Warren, J.C., Murdock, G.L., Ma, Y., Goodman, S.R. and Zimmer, W.E., 1993, Molecular cloning of testicular 20α-hydroxysteroid dehydrogenase: identity with aldose reductase, Biochemistry 32:1401–1406.

    Article  PubMed  CAS  Google Scholar 

  • Wermuth, B. and Monder, C., 1983, Aldose and aldehyde reductase exhibit isocorticosteroid reductase activity, Eur. J. Biochem. 131:423–426.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D.K., Bohren, K.M., Gabbay, K.H. and Quiocho, F.A., 1992, An unlikely sugar substrate site in the 1.65 A structure of the human aldose reductase holoenzyme implicated in diabetic complications, Science 257:81–84.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D.K., Tarle, I., Petrash, J.M. and Quiocho, F.A., 1993, Refined 1.8 A structure of human aldose reductase complexed with the potent inhibitor zopolrestat, Proc Natl Acad Sci USA 90:9847–9851.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Penning, T.M. (1996). Hydroxysteroid Dehydrogenases. In: Weiner, H., Lindahl, R., Crabb, D.W., Flynn, T.G. (eds) Enzymology and Molecular Biology of Carbonyl Metabolism 6. Advances in Experimental Medicine and Biology, vol 414. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5871-2_54

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5871-2_54

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7692-7

  • Online ISBN: 978-1-4615-5871-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics