Skip to main content
  • 2768 Accesses

Abstract

Of all the poly types, 6H is by far the most commonly occurring modification in commercial SiC. The next most common polytypes are 15R and 4H, respectively. SiC also crystallizes in the wurtzite structure (2H-SiC). Assuming that the 3C and 2H structures are extremes in the parameter describing the percentage of hexagonal close packing (often called hexagonality) with 0 and 100%, respectively, we get the hexagonal nature of 33% for 6H structure, 40% for 15R structure, and 50% for 4H structure. The hexagonal and rhombohedral polytypes have a sixhold symmetry axis along the stacking direction (c axis), and thus these crystals present an anisotropic (uniaxial) behavior of phySiCal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Käckell, B. Wenzien, and F. Bechstedt, Phys. Rev. B 50, 10761 (1994).

    Article  Google Scholar 

  2. C. H. Park, B.-H. Cheng, K.-H. Lee, and K. J. Chang, Phys. Rev. B 49, 4485 (1994).

    Article  CAS  Google Scholar 

  3. B. Wenzien, P. Käckell, F. Bechstedt, and G. Gappellini, Phys. Rev. B 52, 10897 (1995).

    Article  CAS  Google Scholar 

  4. Numerical Data and Functional Relationships in Science and Technology, edited by K.-H. Hellwege and O. Madelung, Landolt-Börnstein, New Series, Group III, Vol. 17, Pt. a (Springer, Berlin, 1982).

    Google Scholar 

  5. W. J. Choyke, D. R. Hamilton, and L. Patrick, Phys. Rev. 133, A1163 (1964).

    Article  Google Scholar 

  6. L. Patrick, D. R. Hamilton, and W. J. Choyke, Phys. Rev. 143, 526 (1966).

    Article  CAS  Google Scholar 

  7. W. R. L. Lambrecht, B. Segall, M. Yoganathan, W. Suttrop, R. P. Devaty, W. J. Choyke, J. A. Edmond, J. A. Powell, and M. Alouani, Phys. Rev. B 50, 10722 (1994).

    Article  CAS  Google Scholar 

  8. J. A. Powell, J. Opt. Soc. Am. 62, 341 (1972).

    Article  CAS  Google Scholar 

  9. P. T. B. Shaffer, Appl. Opt. 10, 1034 (1971).

    Article  CAS  Google Scholar 

  10. E. Biedermann, Solid State Commun. 3, 343 (1965).

    Article  CAS  Google Scholar 

  11. Yu. A. Makhalov and E. N. Mokhov, Sov. Phys. Solid State 18, 1451 (1976).

    Google Scholar 

  12. O. Brafman and I. T. Steinberger, Phys. Rev. 143, 501 (1966).

    Article  CAS  Google Scholar 

  13. S. G. Sridhara, R. P. Devaty, and W. J. Choyke, J. Appl. Phys. 84, 2963 (1988).

    Article  Google Scholar 

  14. S. Zollner and J. N. Hilifker, Phys. Status Solidi A 166, R9 (1998).

    Article  CAS  Google Scholar 

  15. S. Ninomiya and S. Adachi, Jpn. J. Appl. Phys. 33, 2479 (1994).

    Article  CAS  Google Scholar 

  16. A. N. Pikhtin, V. T. Prokopenko, V. S. Rondarev, and A. D. Yas’kov, Opt. Spectrosc. 43, 420 (1977).

    Google Scholar 

  17. W. G. Spitzer, D. Kleinman, and D. Walsh, Phys. Rev. 113, 127 (1959).

    Article  CAS  Google Scholar 

  18. F. Engelbrecht and R. Helbig, Phys. Rev. B 48, 15698 (1993).

    Article  CAS  Google Scholar 

  19. W. J. Choyke and L. Patrick, J. Opt. Soc. Am. 58, 377 (1968).

    Article  CAS  Google Scholar 

  20. V. B. Bogdanov, A. N. Pikhtin, V. F, Tsvetkov, and A. D. Yas’kov, Opt. Spectrosc. 52, 644 (1982).

    Google Scholar 

  21. H. R. Philipp, Phys. Rev. 111, 440 (1958).

    Article  Google Scholar 

  22. R. Groth and E. Kauer, Phys. Status Solidi 1, 445 (1961).

    Article  CAS  Google Scholar 

  23. W. J. Choyke and L. Patrick, Phys. Rev. 127, 1868 (1962).

    Article  CAS  Google Scholar 

  24. W. J. Choyke and L. Patrick, Phys. Rev. 172, 769 (1968).

    Article  CAS  Google Scholar 

  25. V. V. Makarov, Sov. Phys.-Semicond. 6, 1556 (1973).

    Google Scholar 

  26. B. Ellis and T. S. Moss, Proc. Roy. Soc. A 299, 393 (1967).

    Article  CAS  Google Scholar 

  27. H. R. Philipp and E. A. Taft, in Silicon Carbide-A High Temperature Semiconductor, edited by J. R. O’Connor and J. Smiltens (Pergamon, Oxford, 1960), p. 366.

    Google Scholar 

  28. B. E. Wheeler, Solid State Commun. 4, 173 (1966).

    Article  CAS  Google Scholar 

  29. S. Logothetidis and J. Petalas, J. Appl. Phys. 80, 1768 (1996).

    Article  CAS  Google Scholar 

  30. D. L. Windt, W. C. Cash, Jr., M. Scott, P. Arendt, B. Newnam, R. F. Fisher, A. B. Swartzlander, P. Z. Takacs, and J. M. Pinneo, Appl. Opt. 27, 279 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adachi, S. (1999). Hexagonal Silicon Carbide (2H-, 4H-, and 6H-SiC). In: Optical Constants of Crystalline and Amorphous Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5247-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5247-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8567-7

  • Online ISBN: 978-1-4615-5247-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics