Skip to main content

Abstract

Gallium phosphide (GaP) is commercially one of the most important III–V semiconductors because of its application to electroluminescent devices. GaP is an indirect-band-gap semiconductor possessing the zinc-blende structure. A wide variety of theoretical and experimental works have given detailed information about the phySiCal properties of this material (see Refs. [1,2]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Numerical Data and Functional Relationships in Science and Technology, edited by K.-H. Hellwege and O. Madelung, Landolt-Börnstein, New Series, Group III, Vol. 17, Pt. a (Springer, Berlin, 1982).

    Google Scholar 

  2. S. Adachi, PhySiCal Properties of III–V Semiconductor Compounds: InP, InAs, GaAs, GaP, In Ga As, and In Ga As P (Wiley-Interscience, New York, 1992).

    Book  Google Scholar 

  3. J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 556 (1976).

    Article  CAS  Google Scholar 

  4. S. Adachi, J. Appl. Phys. 66, 6030 (1989).

    Article  CAS  Google Scholar 

  5. S. Zollner, M. Garriga, J. Kircher, J. Humlíćek, M. Cardona, and G. Neuhold, Phys. Rev. B 48, 7915 (1993).

    Article  CAS  Google Scholar 

  6. M. L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789 (1966).

    Article  CAS  Google Scholar 

  7. W. G. Spitzer, M.I Gershenzon, C. J. Frosch, and D. F. Gibbs, J. Phys. Chem. Solids 11, 339 (1959).

    Article  CAS  Google Scholar 

  8. M.-Z. Huang and W. Y. Ching, J. Phys. Chem. Solids 46, 977 (1985).

    Article  CAS  Google Scholar 

  9. D. A. Kleinman and W. G. Spitzer, Phys. Rev. 118, 110 (1960).

    Article  CAS  Google Scholar 

  10. A. S. Barker, Jr., Phys. Rev. 165, 917 (1968).

    Article  CAS  Google Scholar 

  11. D. F. Parsons and P. D. Coleman, Appl. Opt. 10, 1683 (1971).

    Article  CAS  Google Scholar 

  12. M. Giehler and E. Jahne, Phys. Status Solidi B 73, 503 (1976).

    Article  CAS  Google Scholar 

  13. A. N. Pikhtin, V. T. Prokopenko, and A. D. Yas’kov, Sov. Phys. Semicond. 10, 1224 (1976).

    Google Scholar 

  14. G. A. Samara, Phys. Rev. B 27, 3494 (1983).

    Article  CAS  Google Scholar 

  15. K. Seeger, Appl. Phys. Lett. 54, 1268 (1989).

    Article  CAS  Google Scholar 

  16. L. Patrick and P. J. Dean, Phys. Rev. 188, 1254 (1969).

    Article  CAS  Google Scholar 

  17. A. K. Wan Abdullah, G. A. Gledhill, C. Patel, and T. J. Parker, Infrared Phys. 29, 719 (1989).

    Article  Google Scholar 

  18. K. A. Maslin, C. Patel, and T. J. Parker, Infrared Phys. 32, 303 (1991).

    Article  CAS  Google Scholar 

  19. E. S. Koteles and W. R. Datars, Solid State Commun. 19, 221 (1976).

    Article  CAS  Google Scholar 

  20. A. D. Remenyuk, L. G. Zabelina, Yu. I. Ukhanov, and Yu. V. Shmartsev, Sov. Phys.-Semicond. 2, 557 (1968); 2, 561 (1968).

    Google Scholar 

  21. J. D. Wiley and M. DiDomenico, Jr., Phys. Rev. B 1, 1655 (1970).

    Article  Google Scholar 

  22. A. N. Pikhtin and D. A. Yas’kov, Phys. Status Solidi 34, 815 (1969).

    Article  Google Scholar 

  23. E. Haga and H. Kimura, J. Phys. Soc. Jpn 19, 658 (1964).

    Article  CAS  Google Scholar 

  24. W. L. Bond, J. Appl. Phys. 36, 1674 (1965).

    Article  CAS  Google Scholar 

  25. D. F. Nelson and E. H. Turner, J. Appl. Phys. 39, 3337 (1968).

    Article  CAS  Google Scholar 

  26. S. A. Abagyan, G. A. Ivanov, Yu. E. Shanurin, and V. I. Amosov, Sov. Phys.-Semicond. 5, 889 (1971).

    Google Scholar 

  27. S. A. Abagyan, G. A. Ivanov, A. P. Izergin, and Yu. E. Shanurin, Sov. Phys.-Semicond. 6, 985 (1972).

    Google Scholar 

  28. G. E. Jellison, Jr., Opt. Mater. 1, 151 (1992).

    Article  CAS  Google Scholar 

  29. M. Bertolotti, V. Bogdanov, A. Ferrari, A. Jascow, N. Nazorova, A. Pikhtin, and L. Schirone, J. Opt. Soc. Am. B 7, 918 (1990).

    Article  CAS  Google Scholar 

  30. K. Strössner, S. Ves, and M. Cardona, Phys. Rev. B 32, 6614 (1985).

    Article  Google Scholar 

  31. P. J. Dean and D. G. Thomas, Phys. Rev. 150, 690 (1966).

    Article  CAS  Google Scholar 

  32. P. J. Dean, G. Kaminsky, and R. B. Zetterstrom, J. Appl. Phys. 38, 3551 (1967).

    Article  CAS  Google Scholar 

  33. A. N. Pikhtin and D. A. Yas’kov, Sov. Phys.-Solid State 11, 455 (1969).

    Google Scholar 

  34. W. P. Dumke, M. R. Lorenz, and G. D. Pettit, Phys. Rev. B 5, 2978 (1972).

    Article  Google Scholar 

  35. S. Ves, K. Strössner, C. K. Kim, and M. Cardona, Solid State Commun. 55, 327 (1985).

    Article  CAS  Google Scholar 

  36. H. Ehrenreich, H. R. Philipp, and J. C. Phillips, Phys. Rev. Lett. 8, 59 (1962).

    Article  Google Scholar 

  37. H. R. Philipp and H. Ehrenreich, Phys. Rev. 129, 1550 (1963).

    Article  CAS  Google Scholar 

  38. S. E. Stokowski and D. D. Sell, Phys. Rev. B 5, 1636 (1972).

    Article  Google Scholar 

  39. G. Jungk, Phys. Status Solidi B 67, 85 (1975).

    Article  CAS  Google Scholar 

  40. D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).

    Article  CAS  Google Scholar 

  41. D. E. Aspnes, J. Vac. Sci. Technol. 17, 1057 (1980).

    Article  CAS  Google Scholar 

  42. D. E. Aspnes and A. A. Studna, Appl. Phys. Lett. 39, 316 (1981).

    Article  CAS  Google Scholar 

  43. S. Zollner, M. Garriga, J. Kircher, J. Humlíćek, M. Cardona, and G. Neuhold, Phys. Rev. B 48, 7915 (1993).

    Article  CAS  Google Scholar 

  44. M. Cardona, W. Gudat, E. E. Koch, M. Skibowski, B. Sonntag, and P. Y. Yu, Phys. Rev. Lett. 25, 659 (1970).

    Article  CAS  Google Scholar 

  45. M. Cardona, W. Gudat, B. Sonntag, and P. Y. Yu, in Proc. 10th Int. Conf. Phys. Semicond., Cambridge, Mass., 1970, edited by S. P. Keller, J. C. Hensel, and F. Stern (U. S. Atomic Energy Commission, Springfield, Va., 1970), p. 209.

    Google Scholar 

  46. W. Gudat, E. E. Koch, P. Y. Yu, M. Cardona, and C. M. Penchina, Phys. Status Solidi B 52, 505 (1972).

    Article  CAS  Google Scholar 

  47. D. E. Aspnes, M. Cardona, V. Saile, M. Skibowski, and G. Sprüssel, Solid State Commun. 31, 99 (1979).

    Article  CAS  Google Scholar 

  48. S. Adachi, Phys. Rev. B 35, 7454 (1987).

    Article  CAS  Google Scholar 

  49. H. Yoshikawa and S. Adachi, Jpn. J. Appl. Phys. 35, 5946 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adachi, S. (1999). GALLIUM PHOSPHIDE (GaP). In: Optical Constants of Crystalline and Amorphous Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5247-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5247-5_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8567-7

  • Online ISBN: 978-1-4615-5247-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics