Skip to main content

EPR Detection of Nitrosylated Compounds : Introduction with some Historical Background

  • Chapter
Nitric Oxide in Transplant Rejection and Anti-Tumor Defense

Abstract

Considered for a long time as a simple chemical of great industrial importance, then in turn as a poison and a pollutant, more recently as an important endogenous and ubiquitous gas in mammals, possibly as a “miraculous” gas to use in neonatal intensive care units, etc., nitric oxide has become as fascinating a molecule as molecular oxygen. The main difference between the two gases lies in the facts that we breathe air from our first cry at birth and have some culture-based understanding of air breathing, while the understanding of the various biological roles of NO, such as in the opening of the bronchial alveoles that precedes the first cry of the neonate, is still in its infancy. We think it interesting to hint at the various sources of NO on earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abu-Soud HM, Wang J, Rousseau DL et al. Neuronal nitric oxide synthase self-inactivates by forming a ferrous-nitrosyl complex during aerobic catalysis. J Biol Chem 1995;270:22997–23006

    PubMed  CAS  Google Scholar 

  • Akaike T, Maeda H. Quantitation of nitric oxide using 2-phenyl-4,4,5,54etramethylimidazoline-l-oxyl 3-oxide (PTIO). Methods Enzymol 1996;268:211–221

    PubMed  CAS  Google Scholar 

  • Akaike T, Yoshida M, Miyamoto Y et al. Antagonistic action of imidazolineoxyl N-oxides against endothelium-derived relaxing factor / NO through a radical reaction. Biochemistry 1993;32:827–832

    PubMed  CAS  Google Scholar 

  • Alecci M, Ferrari M, Quaresima V et al. Simultaneous 280 MHz EPR imaging of rat organs during nitric oxide clearance. Biophys J 1994;67:1274–1278.

    PubMed  CAS  Google Scholar 

  • Alving K, Weitzberg E, Lundberg JM. Increased amount of nitric oxide in exhaled air of asthmatics. Eur Respir J 1993;6:1368–1370

    PubMed  CAS  Google Scholar 

  • Arciero DM, Lipscomb JD, Huynh BH et al. EPR and Mössbauer studies of protocatechuate 4,5-dioxygenase. Characterization of a new Fe2+ environment. J Biol Chem 1983;258:14981–14991

    PubMed  CAS  Google Scholar 

  • Arnold WP, Mittal CK, Katsuki S et al. Nitric oxide activates guanylate cyclase and increases guanosine 3′-5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 1977;74:3203–3207

    PubMed  CAS  Google Scholar 

  • Arroyo CM & Kohno M. Difficulties encountered in the detection of nitric oxide (NO) by spin trapping techniques. A cautionary note. Free Rad Res Comms 1991;14:145–155

    CAS  Google Scholar 

  • Az-ma T, Fujii K, Yuge O. Reaction between imidazolineoxil N-oxide (carboxy-PTIO) and nitric oxide released from cultured endothelial cells: quantitative measurement of nitric oxide by ESR spectrometry. Life Sci 1994;54:PL185–PL190

    CAS  Google Scholar 

  • Benjamin N, O’Driscoll F, Dougall H et al. Stomach NO synthesis. Nature 1994;368:502

    PubMed  CAS  Google Scholar 

  • Beringer R, Castle JG. Magnetic resonance absorption in nitric oxide. Phys Rev 1950,78:581–586

    CAS  Google Scholar 

  • Bloch F, Hansen WW, Packard M. The nuclear induction experiment. Phys Rev 1946;70:474–485

    CAS  Google Scholar 

  • Blokzijl-Homan MFJ & Van Gelder BF. Biochemical and biophysical studies on cytochrome aa3. III. The EPR spectrum of NO-ferrocytochrome aj. Biochim Biophys Acta 1971;234:493–498

    PubMed  CAS  Google Scholar 

  • Bonnett R, Chandra S, Charalambides AA et al. Nitrosation and nitrosylation of haemoproteins and related compounds. Part 4. Pentaco-ordinate nitrosylprotohaem as the pigment of cooked cured meat. Direct evidence from ESR spectroscopy. J Chem Soc Perkin I 1980;1980:1706–1710

    Google Scholar 

  • Boucher J-L, Custot J, Vadon S et al. N W-hydroxy-L-arginine, an intermediate in the L-arginine to nitric oxide pathway, is a strong inhibitor of liver and macrophage arginase. Biochem Biophys Res Commun 1994;203:1614–1621

    PubMed  CAS  Google Scholar 

  • Bouchet M, Renaudin M-H, Raveau C et al. Safety requirement for use of inhaled nitric oxide in neonates. Lancet 1993;341:968–969

    PubMed  CAS  Google Scholar 

  • Bouton C, Raveau M, Drapier J-C. Modulation of iron regulatory protein functions. Further insights into the role of nitrogen-and oxygen-derived reactive species. J Biol Chem 1996;271:2300–2306

    PubMed  CAS  Google Scholar 

  • Brittain T, Blackmore R, Greenwood C et al. Bacterial nitrite-reducing enzymes. Eur J Biochem 1992;209:793–802

    PubMed  CAS  Google Scholar 

  • Brooks SB, Lewis MJ, Dickerson RR. Nitric oxide emissions from the high-temperature viscous boundary layers of hypersonic aircraft within the stratosphere. J Geophys Res 1993;98:755–760

    Google Scholar 

  • Brown GC. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett 1995;369:136–139

    PubMed  CAS  Google Scholar 

  • Brown GC & Cooper CE. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett 1994;356:295–298

    PubMed  CAS  Google Scholar 

  • Brudvig GW, Stevens TH, Chan SI. Reactions of nitric oxide with cytochrome c oxidase. Biochemistry 1980;19:5275–5285

    PubMed  CAS  Google Scholar 

  • Butler AR, Glidewell C, Li M-H. Nitrosyl complexes of iron-sulfur clusters. Adv Inorg Chem 1988;32:335–393

    CAS  Google Scholar 

  • Chien JCW. Electron paramagnetic resonance study of the stereochemistry of nitrosylhemoglobia. J Chem Phys 1969;51:4220–4227

    PubMed  CAS  Google Scholar 

  • Choi W-S, Chang M-S, Han J-W et al. Identification of nitric oxide synthase in Staphylococcus aureus. Biochem Biophys Res Commun 1997;237:554–558

    PubMed  CAS  Google Scholar 

  • Clizhan M, Shteynbuk M, Kuppusamy P et al. An optimized L-band ceramic resonator for EPR imaging of biological samples. J Magn Res 1993;105:49–53

    Google Scholar 

  • Clarkson RB, Norby SW, Smimov A et al. Direct measurement of the accumulation and mitochondrial conversion of nitric oxide within Chinese hamster ovary cells using an intracellular electron paramagnetic resonance technique. Biochim Biophys Acta 1995; 1243:496–502

    PubMed  Google Scholar 

  • Cleeter MWJ, Cooper JM, Darley-Usmar VM et al. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett 1994;345:50–54

    PubMed  CAS  Google Scholar 

  • Commoner B, Woolum JC, Senturia BH et al. The effects of 2-acetylaminofluorene and nitrite on free radicals and carcinogenesis in rat liver. Cancer Res 1970;30:2091–2097

    PubMed  CAS  Google Scholar 

  • Conte A, Ottaviani E. Nitric oxide activity in molluscan hemocytes. FEBS Lett 1995;365:120–124

    PubMed  CAS  Google Scholar 

  • Cooper CE, Brown GC. The interactions between nitric oxide and brain nerve terminals as studied by electron paramagnetic resonance. Biochem Biophys Res Commun 1995;212:404–412

    PubMed  CAS  Google Scholar 

  • Corbett JA, Kwon G, Turk J et al. IL-1b induces the coexpression of both nitric oxide synthase and cyclooxygenase by islets of Langerhans: activation of cyclooxygenase by nitric oxide. Biochemistry 1993;32:13767–13770

    PubMed  CAS  Google Scholar 

  • Corraliza IM, Soler G, Eichmann K et al. Arginase induction by suppressors of nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone-marrow-derived macrophages. Biochem Biophys Res Commun 1995;206:667–673

    PubMed  CAS  Google Scholar 

  • Coryell CD, Pauling L, Dodson RW. The magnetic properties of intermediates in the reactions of hemoglobin. J Phys Chem 1939;43:825–839

    CAS  Google Scholar 

  • Cox CD, Payne WJ, DerVartanian DV. Electron paramagnetic resonance studies on the nature of hemoproteins in nitrite and nitric oxide reduction. Biochim Biophys Acta 1971;253:290–294

    PubMed  CAS  Google Scholar 

  • Craven PA, DeRubertis FR. Restoration of the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide, and related activators by heme and hemoproteins. Evidence for involvement of the paramagnetic nitrosyl-heme complex in enzyme activation. J Biol Chem 1978;253:8433–8443

    PubMed  CAS  Google Scholar 

  • Craven PA, DeRubertis FR, Pratt DW. Electron spin resonance study of the role of NOcatalase in the activation of guanylate cyclase by NaN3 and NH2OH. Modulation of enzyme responses by heme proteins and their nitrosyl derivatives. J Biol Chem 1979;254:8213–8222

    PubMed  CAS  Google Scholar 

  • Cueto M, Hernandez-Perera O, Martin R et al. Presence of nitric oxide synthase activity in roots and nodules of Lupinus albus. FEBS Lett 1996;398:159–164

    PubMed  CAS  Google Scholar 

  • Cueto R, Pryor WA. Cigarette smoke chemistry: conversion of nitric oxide to nitrogen dioxide and reactions of nitrogen oxides with other smoke components as studied by Fourier transform infrared spectroscopy. Vibrational Spectr 1994;7:97–111

    CAS  Google Scholar 

  • Cummerov RL, Halliday D. Paramagnetic losses in two manganous salts. Phys Rev 1946;70:433

    Google Scholar 

  • Custot J, Boucher J-L, Vadon S et al. N W-Hydroxylamino-a-aminoacids as a new class of very strong inhibitors of arginases. J Biol Inorg Chem 1996;1:73–82

    CAS  Google Scholar 

  • Daghigh F, Fukuto JM, Ash DE. Inhibition of rat liver arginase by an intermediate in NO biosynthesis, NG-hydroxy-L-arginine: implications for the regulation of nitric oxide biosynthesis by arginase. Biochem Biophys Res Commun 1994,202:174–180

    PubMed  CAS  Google Scholar 

  • Davidge ST, Baker PN, McLaughlin MK et al. Nitric oxide produced by endothelial cells increases production of eicosanoïds through activation of prostaglandin H synthase. Circ Res 1995;77:274–283

    PubMed  CAS  Google Scholar 

  • DeMaster EG, Quast BJ, Mitchell RA Inhibition of S-nitrosation of reduced glutathione in aerobic solutions of nitric oxide by phosphate and other inorganic anions. Biochem Pharmacol 1997;53:581–585

    Google Scholar 

  • DerVartanian DV, LeGall J. Electron paramagnetic studies on the reaction of exogenous ligands with cytochrome c3 from Desulfovibrio vulgaris. Biochim Biophys Acta 1971;243:53–65

    Google Scholar 

  • Di Salle F, Barone P, Hacker H et al. Nitric oxide-haemoglobin: a new biochemical hypothesis for signal changes in fMRI. NeuroReport 1997;8:461–464

    PubMed  Google Scholar 

  • Dobry A, Boyer F. Sur le nitrososulfure de fer ou sel de Roussin — Action antiseptique. Annales Institut Pasteur. 1945;71:455–462

    CAS  Google Scholar 

  • Dobry-Duclaux A. Sur la détermination des sites actifs de certaines enzymes au moyen d’un nouveau réactif spécifique, le sel de Roussin. I. Biochim Biophys Acta 1960a;39:33–44

    Google Scholar 

  • Dobry-Duclaux A. Sur la détermination des sites actifs de certaines enzymes au moyen d’un nouveau réactif spécifique, le sel de Roussin. II. Biochim Biophys Acta 1960b;39:44–52

    Google Scholar 

  • Dousmanis GC. Magnetic hyperfine effects and electronic structure of NO. Phys Rev 1955;97:967–970

    CAS  Google Scholar 

  • Drapier J-C, Hirling H, Wietzerbin J et al. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. EMBO J 1993;12:3643–3649

    PubMed  CAS  Google Scholar 

  • Drapier J-C, Pellat C, Henry Y. Generation of EPR-detectable nitrosyl-iron complexes in tumor target cells cocultured with activated macrophages. J Biol Chem 1991;266:10162–10167

    PubMed  CAS  Google Scholar 

  • Ducastel B. Etude de l’interaction du monoxyde d’azote et de protéines à fer non-héminique: ferritine et transferrines, protéines du métabolisme du fer, et ribonucléotide réductase, enzyme-clef de la biosynthèse de l’ADN. PhD Thesis, Université Paris XI Orsay, France, 19 dec. 1996.

    Google Scholar 

  • Ducrocq C, Guissani A. Palliatives to underproduction of nitric oxide as assayed by EPR spectroscopy. In Henry YA, Guissani A, Ducastel B, eds. Nitric Oxide Research from Chemistry to Biology: EPR Spectroscopy of Nitrosylated Compounds. R G Landes, Austin, TX, USA. 1997;271–292

    Google Scholar 

  • Duncan C, Dougall H, Johnston P et al. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nature Medicine 1995;1:546–551

    PubMed  CAS  Google Scholar 

  • Emanuel NM, Saprin AN, Shabalkin VA et al. Detection and investigation of a new type of ESR signal characteristic of some tumour tissues. Nature 1969;222:165–167

    PubMed  CAS  Google Scholar 

  • Esumi H, Tannenbaum SR. U.S.-Japan cooperative cancer research program: seminar on nitric oxide synthase and carcinogenesis. Cancer Res 1994,54:297–301

    PubMed  CAS  Google Scholar 

  • Feelisch M, Noack EA. Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol 1987;139:19–30

    PubMed  CAS  Google Scholar 

  • Feelisch M, Stamler JS, eds. Methods in Nitric Oxide Research. John Wiley, Chichester, UK. 1996

    Google Scholar 

  • Ferguson SJ. Denitrification: a question of the control and organisation of electron and ion transport. Trends in Biol Sci 1987;12:354–357

    CAS  Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN. Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science 1997;276:1045–1052

    PubMed  CAS  Google Scholar 

  • Friebe A, Malkewitz J, Schultz G et al. Positive effects of pollution? Nature 1996,382:120

    PubMed  CAS  Google Scholar 

  • Fujii S, Yoshimura T, Kamada H. Nitric oxide trapping efficiencies of water-soluble iron (III) complexes with dithiocarbamate derivatives. Chem Lett 1996,785–786

    Google Scholar 

  • Fukahori M, Ichimori K, Ishida H et al. Nitric oxide reversibly suppresses xanthine oxidase activity. Free Rad Res 1994;21:203–212

    CAS  Google Scholar 

  • Furchgott RF. A research trail over half a century. Annu Rev Pharmacol Toxicol 1995;35:l–27

    Google Scholar 

  • Furchgott RF, Vanhoutte PM. Endothelium-derived relaxing and contracting factors. FASEB J 1989;3:2007–2018

    PubMed  CAS  Google Scholar 

  • Furukawa T, Kohno H, Tokunaga R et al. Nitric oxide-mediated inactivation of mammalian ferrochelatase in vivo and in vitro: possible involvement of the iron-sulphur cluster of the enzyme. Biochem J 1995,310:533–538

    PubMed  CAS  Google Scholar 

  • Gallagher JJ, Johnson CM. Uncoupling effects in the microwave spectrum of nitric oxide. Phys Rev 1956;103:1727–1737

    CAS  Google Scholar 

  • Gaily JA, Montague PR, Reeke GN et al. The NO hypothesis: Possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc Natl Acad Sci USA 1990;87:3547–3551

    Google Scholar 

  • Galpin JR, Veldink GA, Vliegenthart JFG et al. The interaction of nitric oxide with soybean lipoxygenase-1. Biochim Biophys Acta 1978;536:356–362

    PubMed  CAS  Google Scholar 

  • Garthwaite J, Charles SL, Chess-Williams R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 1988;336:385–388

    PubMed  CAS  Google Scholar 

  • Gibson QH, Roughton FJW. The kinetic and equilibria of the reactions of NO with sheep haemoglobin. J Physiol 1957; 136:507–526

    PubMed  CAS  Google Scholar 

  • Greenberg SS, Wilcox DE, Rubanyi GM. Endothelium-derived relaxing factor released from canine femoral artery by acethycholine cannot be identified as free nitric oxide by electron paramagnetic resonance spectroscopy. Circ Res 1990;67:1446–1452

    PubMed  CAS  Google Scholar 

  • Griffith JS. On the magnetic properties of some haemoglobin complexes. Proc Roy Soc A 1956,235:23–36

    CAS  Google Scholar 

  • Griffiths JHE. Anomalous high-frequency resistance of ferromagnetic metals. Nature 1946;158:670–671

    Google Scholar 

  • Griscavage JM, Fukuto JM, Komori Y et al. Nitric oxide inhibits neuronal nitric oxide synthase by interacting with the heme prosthetic group. Role of tetrahydrobiopterin in modulating the inhibitory action of nitric oxide. J Biol Chem 1994;269:21644–21649

    PubMed  CAS  Google Scholar 

  • Gustafsson LE, Leone AM, Persson MG et al. Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem Biophys Res Commun 1991;181:852–857

    PubMed  CAS  Google Scholar 

  • Hall DM & Buettner GR. In vivo spin trapping of nitric oxide by heme: electron paramagnetic resonance detection ex vivo. Methods Enzymol 1996;268:188–192

    PubMed  CAS  Google Scholar 

  • Haskin CJ, Ravi N, Lynch JB et al. Reaction of NO with the reduced R2 protein of ribonucleotide reductase from Escherichia coli. Biochemistry 1995;34:11090–11098

    PubMed  CAS  Google Scholar 

  • Haswell-Elkins MR, Satarug S, Tsuda M et al. Liver fluke infection and cholangiocarcinoma: model of endogenous nitric oxide and extragastric nitrosation in human carcinogenesis. Mutation Res 1994,305:241–252

    PubMed  CAS  Google Scholar 

  • Hecker M, Nematollahi H, Hey C et al. Inhibition of arginase by N G-hydroxy-L-arginine in alveolar macrophages: implications for the utilization of L-arginine for nitric oxide synthesis. FEBS Lett 1995,359:251–254

    PubMed  CAS  Google Scholar 

  • Henry YA. Introduction: the origins of nitric oxide. In Henry YA, Guissani A, Ducastel B, eds. Nitric Oxide Research from Chemistry to Biology: EPR Spectroscopy of Nitrosylated ompounds.. RG Landes, Austin, TX, USA. 1997a;3–14

    Google Scholar 

  • Henry YA. EPR characterization of nitric oxide binding to hemoglobin. In Henry YA, Guissani A, Ducastel B, eds. Nitric Oxide Research from Chemistry to Biology: EPR Spectroscopy of Nitrosylated Compounds. RG Landes, Austin, TX, USA. 1997b;61–86

    Google Scholar 

  • Henry YA. Effects of nitric oxide on red blood cells. In Henry YA, Guissani A, Ducastel B, eds. Nitric Oxide Research from Chemistry to Biology EPR Spectroscopy of Nitrosylated Compounds. RG Landes, Austin, TX, USA. 1997c;87–98

    Google Scholar 

  • Henry YA. Utilization of nitric oxide as a paramagnetic probe of the molecular binding site of metalloenzymes. In Henry YA, Guissani A, Ducastel B, eds. Nitric Oxide Research from Chemistry to Biology EPR Spectroscopy of Nitrosylated Compounds. RG Landes, Austin, TX, USA. 1997d;99–144

    Google Scholar 

  • Henry YA. Nitric oxide, an intermediate in the denitrification process and other bacterial pathways, as detected by EPR spectroscopy. In Henry YA, Guissani A, Ducastel B, eds. Nitric Oxide Research from Chemistry to Biology EPR Spectroscopy of Nitrosylated Compounds. RG Landes, Austin, TX, USA. 1997e;145–174

    Google Scholar 

  • Henry YA. Overproduction of nitric oxide in physiology and pathophysiology: EPR detection. In Henry YA, Guissani A, Ducastel B, eds. Nitric Oxide Research from Chemistry to Biology EPR Spectroscopy of Nitrosylated Compounds. RG Landes, Austin, TX, USA. 1997f;235–270

    Google Scholar 

  • Henry YA. General discussion: cross-regulations of metalloenzymes triggered by nitric oxide. In Henry YA, Guissani A, Ducastel B, eds. Nitric Oxide Research from Chemistry to Biology EPR Spectroscopy of Nitrosylated Compounds. RG Landes, Austin, TX, USA. 1997g;307–328

    Google Scholar 

  • Henry Y, Banerjee R. Electron paramagnetic studies of nitric oxide haemoglobin derivatives: isolated subunits and nitric oxide hybrids. J Mol Biol 1973,73:469–482

    PubMed  CAS  Google Scholar 

  • Henry Y, Bessières P. Denitrification and nitrite reduction: Pseudomonas aeruginosa nitrite reductase. Biochimie 1984;66:259–289

    PubMed  CAS  Google Scholar 

  • Henry Y, Cassoly R. Chain non-equivalence in nitric oxide binding to hemoglobin. Biochem Biophys Res Commun 1973;51:659–665

    PubMed  CAS  Google Scholar 

  • Henry YA, Singel DJ. Metal-nitrosyl interactions in nitric oxide biology probed by electron paramagnetic resonance spectroscopy. In: Feelisch M, Stamler J, eds. Methods in nitric oxide research. John Wiley and Sons, Chichester, UK, 1996;357–372

    Google Scholar 

  • Henry Y, Ducrocq C, Drapier J-C et al. Nitric oxide, a biological effector. Electron paramagnetic resonance detection of nitrosyl-iron-protein complexes in whole cells. Eur Biophys J 1991;20:l–15

    Google Scholar 

  • Henry Y, Lepoivre M, Drapier J-C et al. EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J 1993;7:1124–1134

    PubMed  CAS  Google Scholar 

  • Henry YA, Ducastel B, Guissani A. Enzymatic targets of nitric oxide as detected by EPR spectroscopy within mammalian cells. In Henry YA, Guissani A, Ducastel B, eds. Nitric Oxide Research from Chemistry to Biology: EPR Spectroscopy of Nitrosylated Compounds. RG Landes, Austin, TX, USA. 1997;205–234

    Google Scholar 

  • Henry YA, Guissani A, Ducastel B, eds. Nitric Oxide Research from Chemistry to Biology: EPR Spectroscopy of Nitrosylated Compounds. RG Landes, Austin, TX, USA. 1997

    Google Scholar 

  • Hibbs JB, Taintor RR, Vavrin Z et al. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 1988;157:87–94

    PubMed  CAS  Google Scholar 

  • Hibbs JB, Taintor RR, Vavrin Z et al. Synthesis of nitric oxide from a terminal guanidino nitrogen atom of L-arginine: a molecular mechanism regulating cellular proliferation that targets intracellular iron. In Moncada S, Higgs EA, eds. Nitric oxide from L-arginine: a bioregulatory system. Elsevier Science, 1990; 189–223

    Google Scholar 

  • Hogg N, Singh RJ, Joseph J et al. Reactions of nitric oxide with nitronyl nitroxides and oxygen: prediction of nitrite and nitrate formation by kinetic simulation. Free Rad Res 1995,22:47–56

    CAS  Google Scholar 

  • Hori H, Masuya F, Tsubaki M et al. Electronic and stereochemical characterizations of intermediates in the photolysis of ferric cytochrome P450scc nitrosyl complexes. Effects of cholesterol and its analogues on ligand binding structures. J Biol Chem 1992;267:18377–18381

    PubMed  CAS  Google Scholar 

  • Hurshman AR, Marietta MA. Nitric oxide complexes of inducible nitric oxide synthase: spectral characterization and effect on catalytic activity. Biochemistry 1995;34:5627–5634

    PubMed  CAS  Google Scholar 

  • Hyde JS, Subczynski WK. Spin-lable oxymetry. In LJ Berliner, J Reuben, eds. Biological Magnetic Resonance. Vol. 8, Spin Labeling: Theory and Applications. Plenum, New York. 1989;399–425

    Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS et al. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987;84:9265–9269

    PubMed  CAS  Google Scholar 

  • Ignarro LJ, Edwards JC, Gruetter DY et al. Possible involvement of S-nitrosothiols in the activation of guanylate cyclase by nitroso compounds. FEBS Lett 1980; 110: 275–278

    PubMed  CAS  Google Scholar 

  • Ignarro LJ, Murad F, eds. Nitric oxide: biochemistry, molecular biology, and therapeutic implications. Adv in Pharmacology, vol 34. Academic Press, San Diego, USA. 1995

    Google Scholar 

  • Ingram DJE, Bennett JE. Paramagnetic resonance in phtalocyanine, haemoglobin, and other organic derivatives. Discussion Faraday Soc 1955;19:140–146

    Google Scholar 

  • Iqbal ZM, Dahl K, Epstein SS. Role of nitrogen dioxide in the biosynthesis of nitrosamines in mice. Science 1980;207:1475–1477

    PubMed  CAS  Google Scholar 

  • Iyengar R, Stuehr DJ, Marietta MA. Macrophages synthesis of nitrite, nitrate, and N-nitrosamines: precursors and role of the respiratory burst. Proc Natl Acad Sci USA 1987;84:6369–6373

    PubMed  CAS  Google Scholar 

  • Jia L, Bonaventura C, Bonaventura J et al. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 1996;380:221–226

    PubMed  CAS  Google Scholar 

  • Johansson KUI, Carlberg M. NO-synthase: what can research on invertebrates add to what is already known? Adv in Neuroimmunology 1995;5:431–442

    CAS  Google Scholar 

  • Johnson C, Henshaw J, McInnes G. Impact of aircraft and surface emissions of nitrogen oxides on tropospheric ozone and global warming. Nature 1992;355:69–71

    CAS  Google Scholar 

  • Joseph J, Kalyanaraman B, Hyde JS. Trapping of nitric oxide by nitroxyl nitroxides: an electron spin resonance investigation. Biochem Biophys Res Commun 1993,192:926–934

    PubMed  CAS  Google Scholar 

  • Kalyanaraman B. Detection of nitric oxide by elctron spin resonance in chemical, photochemical, cellular, physiological, and pathophysiological systems. Methods Enzymol 1996;268:168–187

    PubMed  CAS  Google Scholar 

  • Kanner J, Harel S, Granit R. Nitric oxide, an inhibitor of lipid oxidation by lipoxygenase, cyclooxygenase and hemoglobin. Lipids 1992,27:46–49

    PubMed  CAS  Google Scholar 

  • Karthein R, Nastainczyk W, Ruf HH. EPR study of ferric prostaglandin H synthase and its ferrous NO derivative. Eur J Biochem 1987;166:173–180

    PubMed  CAS  Google Scholar 

  • Keilin D, Hartree EF. Reaction of nitric oxide with haemoglobin and methaemoglobin. Nature 1937;139:548

    CAS  Google Scholar 

  • Kelm M, Feelisch M, Spahr R et al. Quantitative and kinetic characterisation of nitric oxide and EDRF released from cultured endothelial cells. Biochem Biophys Res Commun 1988;154:236–244

    PubMed  CAS  Google Scholar 

  • Kennedy MC, Gan T, Antholine WE et al. Metallothionein reacts with Fe2+ and NO to form products with g = 2.039 ESR signal. Biochem Biophys Res Commun 1993;196:632–635

    PubMed  CAS  Google Scholar 

  • Knowles RG, Palacios M, Palmer RMJ et al. Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci USA 1989;86:5159–5162

    PubMed  CAS  Google Scholar 

  • Komarov AM, Lai C-S. Detection of nitric oxide production in mice by spin-trapping electron paramagnetic resonance spectroscopy. Biochim Biophys Acta 1995;1272:29–36

    PubMed  Google Scholar 

  • Komarov A, Mattson D, Jones MM et al. In vivo spin trapping of nitric oxide in mice. Biochem Biophys Res Commun 1993,195:1191–1198

    PubMed  CAS  Google Scholar 

  • Kon H. Paramagnetic resonance study of nitric oxide hemoglobin. J Biol Chem 1968;243:4350–4357

    PubMed  CAS  Google Scholar 

  • Kon H, Kataoka N. Electron paramagnetic resonance of nitric oxide-protoheme with some nitrogenous base. Model systems of nitric oxide hemoproteins. Biochemistry 1969;8:4757–4762

    PubMed  CAS  Google Scholar 

  • Konorev EA, Tarpey MM, Joseph J et al. Nitronyl nitroxides as probes to study the mechanism of vasodilatory action of nitrovasodilators, nitrone spin traps, and nitroxides: role of NO. Free Rad Biol Med 1995;18:169–177

    PubMed  CAS  Google Scholar 

  • Korth H-G, Weber H. Detection of nitric oxide with nitric oxide-trapping reagents. In Feelisch M, Stamler JS, eds. Methods in Nitric Oxide Research. Wiley, New York. 1996,383–391

    Google Scholar 

  • Kosaka H, Sawai Y, Sakagushi H et al. ESR spectral transition by arteriovenous cycle in nitric oxide hemoglobin of cytokine-treated rats. Am J Physiol 1994;266:C1400–1405

    PubMed  CAS  Google Scholar 

  • Kosaka H, Seiyama A. Physiological role of nitric oxide as an enhancer of oxygen transfer from erythrocytes to tissues. Biochem Biophys Res Commun 1996;218:749–752

    PubMed  CAS  Google Scholar 

  • Kosaka H, Shiga T. Detection of nitric oxide by electrom paramagnetic resonance using hemoglobin. In Feelisch M, Stamler JS, eds. Methods in Nitric Oxide Research. Wiley, Chichester, UK. 1996;373–381

    Google Scholar 

  • Kosaka H, Watanabe M, Yoshihara H et al. Detection of nitric oxide production in lipopolysaccharide-treated rats by ESR using carbon monoxide hemoglobin. Biochem Biophys Res Commun 1992;184:1119–1124

    PubMed  CAS  Google Scholar 

  • Kuppusamy P, Chzhan M, Vij K et al. Thre-dimensional spectral-spatial EPR imaging of free radicals in the heart: a technique for imaging tissue metabolism and oxygenation. Proc Natl Acad Sci USA 1994;91:3388–3392

    PubMed  CAS  Google Scholar 

  • Kuppusamy P, Ohnishi ST, Numagami Y et al. Three-dimensional imaging of nitric oxide production in the rat brain subjected to ischemia-hypoxia. J Cerebral Blood Flow Metab 1995a;15:899–903

    Google Scholar 

  • Kuppusamy P, Wang P, Zweier JL. Three-dimensional spacial EPR imaging of the rat heart. Magn Res Medicine 1995b;34:99–105

    Google Scholar 

  • Kwon NS, Stuehr DJ, Nathan CF. Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide. J Exp Med 1991; 174:761–767

    PubMed  CAS  Google Scholar 

  • Lai C-S, Komarov AM. Spin trapping of nitric oxide produced in vivo in septic-shock mice. FEBS Lett 1994;345:120–124

    PubMed  CAS  Google Scholar 

  • Lancaster J, ed. Nitric Oxide: Principles and Actions. Academic Press, San Diego, USA. 1996

    Google Scholar 

  • Laulhère JP, Fontecave M. Nitric oxide does not promote iron release from ferritin. BioMetals 1996;9:10–14

    Google Scholar 

  • Laurent M, Lepoivre M, Tenu J-P. Kinetic modelling of the nitric oxide gradient generated in vitro by adherent cells expressing inducible nitric oxide synthase. Biochem J 1996;314:109–113

    PubMed  CAS  Google Scholar 

  • LeBrun NE, Cheesman RM, Thomson AJ et al. An EPR investigation of non-haem iron sites in Escherichia coli bacterioferritin and their interaction with phosphate. A study using nitric oxide as a spin probe. FEBS Lett 1993;323:261–266

    PubMed  Google Scholar 

  • Lee M, Arosio P, Cozzi A et al. Identification of the EPR-active iron-nitrosyl complexes in mammalian ferritins. Biochemistry 1994;33:3679–3687

    PubMed  CAS  Google Scholar 

  • Leone AM, Gustafsson LE, Francis PL et al. Nitric oxide is present in exhaled breath in humans: direct GC-MS confirmation. Biochem Biophys Res Commun 1994;201:883–887

    PubMed  CAS  Google Scholar 

  • Lepoivre M, Chenais B, Yapo A et al. Alterations of ribonucleotide reductase activity following induction of the nitrite-generating pathway in adenocarcinoma cells. J Biol Chem 1990;265:14143–14149

    PubMed  CAS  Google Scholar 

  • Lepoivre M, Flaman J-M, Bobé P et al. Quenching of the tyrosyl free radical of ribonucleotide reductase by nitric oxide: relationship to cytostasis induced in tumor cells by cytotoxic macrophages. J Biol Chem 1994;269:21891–21897

    PubMed  CAS  Google Scholar 

  • Lepoivre M, Flaman J-M, Henry Y. Early loss of the tyrosyl radical in ribonucleotide reductase of adenocarcinoma cells producing nitric oxide. J Biol Chem 1992,267:22994–23000

    PubMed  CAS  Google Scholar 

  • Lomnicka M, Subczynski WK. Spin-label NO-metry. Curr Topics Biophys 1996,20:76–80

    CAS  Google Scholar 

  • Luckey TD. Introduction to intestinal microecology. Am J Clin Nutr 1972;25:1292–1294

    PubMed  CAS  Google Scholar 

  • Ma Z, Ramanadham S, Corbett JA et al. Interleukin-1 enhances pancreatic islet arachidonic acid 12-lipoxygenase product generation by increasing substrate availability through a nitric oxide-dependent mechanism. J Biol Chem 1996;271:1029–1042

    PubMed  CAS  Google Scholar 

  • Maecarrone M, Corasaniti MT, Guerrieri P et al. Nitric oxide-donor compounds inhibit lipoxygenase activity. Biochem Biophys Res Commun 1996,219:128–133

    Google Scholar 

  • Maines MD, ed. Nitric oxide synthase: characterization and functional analysis. Methods in Neurosciences, Vol. 31. Academic Press, San Diego, USA. 1996

    Google Scholar 

  • Malinski T, Czuchajowski L. Nitric oxide measurements by electrochemical methods. In Feelisch M, Stornier JS, eds. Methods in Nitric Oxide Research. Wiley, New York. 1996;319–339

    Google Scholar 

  • Malinski T, Kapturczak M, Dayharsh J et al. Nitric oxide synthase activity in genetic hypertension. Biochem Biophys Res Commun 1993a; 194:654–658

    Google Scholar 

  • Malinski T, Taha Z, Grunfeld S et al. Diffusion of nitric oxide in the aorta wall monotored in situ by porphyrinic microsensors. Biochem Biophys Res Commun 1993b; 193:1076–1082

    Google Scholar 

  • Marietta MA. Mammalian synthesis of nitrite, nitrate, nitric oxide, and N-nitrosating agents. Chem Res Toxicol 1988;l:249–257

    Google Scholar 

  • Marietta MA, Yoon PS, Iyengar R et al. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 1988;27:8706–8711

    Google Scholar 

  • Martin CT, Morse RH, Kanne RM et al. Reactions of nitric oxide with tree and fungal laccase. Biochemistry 1981;20:5147–5155

    PubMed  CAS  Google Scholar 

  • Maruyama T, Kataoka N, Nagase S et al. Identification of three-line electron spin resonance signal and its relationship to ascites tumors. Cancer Res 1971;31:179–184

    PubMed  CAS  Google Scholar 

  • Maxwell JC, Caughey W. An infrared study of NO bonding to heme B and hemoglobin A: evidence for inositol hexaphosphate induced cleavage of proximal histidine to iron bonds. Biochemistry 1976;15:388–396

    PubMed  CAS  Google Scholar 

  • McDonald CC, Phillips WD, Mower HF. An electron spin resonance of some complexes of iron, nitric oxide, and anionic ligands. J Am Chem Soc 1965;87:3319–3326

    CAS  Google Scholar 

  • McKnight GM, Smith LM, Drummond RS et al. Chemical synthesis of nitric oxide in the stomach from dietary nitrate in humans. Gut 1997;40:211–214

    PubMed  CAS  Google Scholar 

  • Meffert MK, Haley JE, Schuman EM et al. Inhibition of hippocampal heme oxygenase, nitric oxide synthase, and long-term potentiation by metalloporphyrins. Neuron 1994;13:1225–1233

    PubMed  CAS  Google Scholar 

  • Migita CT, Salerno JC, Masters BSS et al. Substrate binding-induced changes in the EPR spectra of the ferrous nitric oxide complexes of neuronal nitric oxide synthase. Biochemistry 1997;36:10987–10993

    PubMed  CAS  Google Scholar 

  • Mikoyan VD, Kubrina LN, Serenzhenkov VA et al. Complexes of Fe2+ with diethyldithiocarbamate or N-methyl-D-glucamine dithiocarbamate as traps of nitric oxide in animal tissues: comparative investigations. Biochim Biophys Acta 1997;1336:225–234

    PubMed  CAS  Google Scholar 

  • Miller OI, Celermajer DS, Deanfield JE et al. Guidelines for the safe administration of inhaled nitric oxide. Arch Disease Childhood 1994;70:F47–F49

    CAS  Google Scholar 

  • Miwa M, Stuehr DJ, Marietta et al. Nitrosation of amines by stimulated macrophages. Carcinogenesis 1987;7:955–958

    Google Scholar 

  • Mizushima M. Theory of the hyperfine structure of NO molecule: electronic structure. Phys Rev 1957;105:1262–1270

    CAS  Google Scholar 

  • Molina-Hidalgo F, Lledo A, Guaza C. Evidence for cyclooxygenase activation by nitric oxide in astrocytes. Glia 1995;15:167–172

    Google Scholar 

  • Moncada S, Radomski MW, Palmer RMJ. Endothelium-derived relaxing factor: identification as nitric oxide and role in the control of vascular tone and platelet function. Biochem Pharmacol 1988,37:2495–2501

    PubMed  CAS  Google Scholar 

  • Mordvintcev P, Mülsch A, Busse R et al. On-line detection of nitric oxide formation in liquid aqueous phase by electron paramagnetic resonance spectroscopy. Anal Biochem 1991;199:142–146

    PubMed  CAS  Google Scholar 

  • Mülsch A, Mordvintcev P, Vanin A. Quantification of nitric oxide in biological samples by electron spin resonance spectroscopy. NeuroProtocols 1992a;l:165–173

    Google Scholar 

  • Mülsch A, Vanin A, Mordvintcev P et al. NO accounts completely for the oxygenated nitrogen species generated by enzymatic L-arginine oxygenation. Biochem J 1992b;288:597–603

    Google Scholar 

  • Murad F, Mittal CK, Arnold WP et al. Guanylate cyclase: activation by azide, nitro compounds, nitric oxide and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv Cyclic Nucleotides Res 1978,9:145–158

    CAS  Google Scholar 

  • Murphy ME, Noack E. Nitric oxide assay using hemoglobin method. Methods Enzymol 1994;233:240–250

    PubMed  CAS  Google Scholar 

  • Musci G, Di Marco S, Bonaccorsi di Patti M et al. Interaction of nitric oxide with ceruloplasmin lacking an EPR-detectable type 2 copper. Biochemistry 1991;30:9866–9872

    PubMed  CAS  Google Scholar 

  • Nagata C, Ioki Y, Kodama M et al. Free radical induced in rat liver by a chemical carcinogen, N-methyl-N’-nitro-N-nitrosoguanidine. Ann N Y Acad Sci 1973;222:1031–1047

    PubMed  CAS  Google Scholar 

  • Nakatsuka M, Osawa Y. Selective inhibition of the 12-lipoxygenase pathway of arachidonic acid metabolism by L-arginine or sodium nitroprusside in intact human platelets. Biochem Biophys Res Commun 1994;200:1630–1634

    PubMed  CAS  Google Scholar 

  • Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 1992;6:3051–3064

    PubMed  CAS  Google Scholar 

  • Nelson MJ. The nitric oxide complex of ferrous soybean lipoxygenase-1: substrate, pH and ethanol effects on the active site iron. J Biol Chem 1987;262:12137–12142

    PubMed  CAS  Google Scholar 

  • Nocek JM, Kurtz DM, Pickering RA et al. Oxidation of deoxyhemerythrin to semi-methemoglobin by nitrite. J Biol Chem 1984;259:12334–12338

    PubMed  CAS  Google Scholar 

  • Norby SW, Weyhenmeyer JA, Clarkson RB. Stimulation and inhibition of nitric oxide production in macrophages and neural cells as observed by spin trapping. Free Rad Biol Med 1997;22:1–9

    PubMed  CAS  Google Scholar 

  • Norman V, Keith CH. Nitrogen oxides in tobacco smoke. Nature 1965;205:915–916

    CAS  Google Scholar 

  • O’Hara JA, Goda F, Liu KJ et al. The pO2 in a murine tumor after irradiation: an in vivo electron paramagnetic resonance oximetry study. Radiat Res 1995;144:222–229

    PubMed  Google Scholar 

  • Ohshima H, Bartsch H. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutation Res 1994;305:253–264

    PubMed  CAS  Google Scholar 

  • Ohshima H, Tsuda M, Adachi H et al. L-arginine-dependent formation of N-nitrosamines by the cytosol of macrophages activated with lipopolysaccharide and interferon-g. Carcinogenesis 1991;12:1217–1220

    PubMed  CAS  Google Scholar 

  • O’Keeffe DH, Ebel RE, Peterson JA. Studies of the oxygen binding site of cytochrome P-450: nitric oxide as a spin-label probe. J Biol Chem 1978;253:3509–3516

    PubMed  Google Scholar 

  • Packer L, ed. Nitric oxide. Part A. Sources and detection of NO; NO synthase. Methods in Enzymology, Vol.268. Academic Press, San Diego, USA. 1996a

    Google Scholar 

  • Packer L, ed. Nitric oxide. Part B. Physiological and pathological processes. Methods in Enzymology, Vol.269. Academic Press, San Diego, USA. 1996b

    Google Scholar 

  • Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987;327:524–526

    PubMed  CAS  Google Scholar 

  • Palmer RMJ, Rees DD, Ashton DS et al. L-arginine is the physiological precursor for the formation of nitric oxide in endothelium dependent relaxation. Biochem Biophys Res Commun 1988;153:1251–1256

    PubMed  CAS  Google Scholar 

  • Paschenko SV, Khramtsov VV, Skatchkov MP et al. EPR and laser flash photolysis studies of the reaction of nitric oxide with water soluble NO trap Fe(II)-proline-dithiocarbamate complex. Biochem Biophys Res Commun 1996;225:577–584

    PubMed  CAS  Google Scholar 

  • Payne WJ. Denitrification. Wiley-Interscience, New York, USA. 1981

    Google Scholar 

  • Payne WJ. Pasteur, Gayon, Dupetit et le cycle de Reiset. Annales de l’Institut Pasteur/Actualités. 1990; 1:31–44

    Google Scholar 

  • Philpott CC, Klausner RD, Rouault TA. The bifunctional iron-responsive element binding protein/cytosolic aconitase: the role of active-site residues in ligand binding and regulation. Proc Natl Acad Sci USA 1994;91:7321–7325

    PubMed  CAS  Google Scholar 

  • Pou S, Keaton L, Surichamom W et al. Can nitric oxide be spin trapped by nitrone and nitroso compounds? Biochim Biophys Acta 1994;1201:118–124

    PubMed  CAS  Google Scholar 

  • Pryor WA. Biological effects of cigarette smoke, wood smoke, and the smoke from plastics: the use of electron spin resonance. Free Rad Biol Med 1992;13:659–676

    PubMed  CAS  Google Scholar 

  • Quaresima V, Alecci M, Ferrari M et al. Whole rat electron paramagnetic resonance imaging of a nitroxide free radical by a radio frequency (280 MHz) spectrometer. Biochem Biophys Res Commun 1992;183:829–835

    PubMed  CAS  Google Scholar 

  • Radomski MW, Martin JF, Moncada S. Synthesis of nitric oxide by the haemocytes of the american horseshoe crab (Limulus polyphemus). Phil Trans Royal Soc Lond B 1991;334:129–133

    CAS  Google Scholar 

  • Radomski MW, Palmer RMJ, Moncada S. The role of nitric oxide and cGMP in platelets adhesion to vascular endothelium. Biochem Biophys Res Commun 1987;148:1482–1489

    PubMed  CAS  Google Scholar 

  • Ravichandran LV, Fohns RA, Rengasamy A. Direct and reversible inhibition of endothelial nitric oxide synthase by nitric oxide. Am J Physiol 1995;268:H2216–H2223

    PubMed  CAS  Google Scholar 

  • Reddy D, Lancaster JR, Cornforth DP. Nitrite inhibition of Clostridium botulinum: electron spin resonance detection of iron-nitric oxide complexes. Science 1983,221-769–770

    PubMed  CAS  Google Scholar 

  • Rein H, Ristau O, Scheler W. On the influence of allosteric effectors on the electron paramagnetic spectrum of nitric oxide hemoglobia. FEBS Lett 1972;24:29–26

    Google Scholar 

  • Richter-Addo GB, Legzdins P. Metal Nitrosyls. Oxford University Press, Oxford, UK. 1992

    Google Scholar 

  • Rinaldo JE, Clark M, Parinello J et al. Nitric oxide inactivates xanthine dehydrogenase and xanthine oxidase in interferon-g-stimulated macrophages. Am J Respir Cell Mol Biol 1994;11:625–630

    PubMed  CAS  Google Scholar 

  • Rodriguez JM, Ko MKW, Sze ND. Role of heterogeneous conversion of N2O5 on sulphate aerosols in global ozone losses. Nature 1991;352:134–137

    CAS  Google Scholar 

  • Rossaint R, Falke KJ, Lopez F et al. Inhaled nitric oxide for the adult respiratory distress syndrome. N Eng J Med 1993;328:399–405

    CAS  Google Scholar 

  • Rousseau DL, Sing S, Ching YC et al. Nitrosyl cytochrome c oxidase Formation and properties of mixed valence enzyme. J Biol Chem 1988;263:5681–5685

    PubMed  CAS  Google Scholar 

  • Roy B, Lepoivre M, Henry Y et al. Inhibition of ribonucleotide reductase by nitric oxide derived from thionitrites: reversible modifications of both subunits. Biochemistry 1995;34:5411–5418

    PubMed  CAS  Google Scholar 

  • Salerno JC, Siedow JN. The nature of the nitric oxide complexes of lipoxygenase. Biochim Biophys Acta 1979;579:246–251

    PubMed  CAS  Google Scholar 

  • Salvemini D, Misko TP, Masferrer JL et al. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci USA 1993;90:7240–7244

    PubMed  CAS  Google Scholar 

  • Sancier K, Freeman G, Mills I. Electron spin resonance of nitric oxide-hemoglobin complexes in solution. Science 1962;137:752–754

    PubMed  CAS  Google Scholar 

  • Schwarz MA, Lazo JS, Yalowich JC et al. Metallothionein protects against the cytotoxic and DNA-damaging effects of nitric oxide. Proc Natl Acad Sci USA 1995;92:4452–4456

    PubMed  CAS  Google Scholar 

  • Sellers VM, Johnson MK, Dailey HA. Function of the [2Fe-2S] cluster in mammalian ferrochelatase: a possible role as a nitric oxide sensor. Biochemistry 1996;35:2699–2704

    PubMed  CAS  Google Scholar 

  • Sen S, Cheema IR. Nitric oxide synthase and calmodulin immunoreactivity in plant embryonic tissue. Biochem Arch 1995;11:221–227

    CAS  Google Scholar 

  • Sharma RD, Sun Y, Dalgamo A. Highly rotationally excited nitric oxide in the terrestrial thermosphere. Geophys Res Letters 1993;20:2043–2045

    CAS  Google Scholar 

  • Shiga T, Hwang R-J, Tyuma I. Electron paramagnetic resonance studies of nitric oxide hemoglobin derivatives. I. Human hemoglobin subunits. Biochemistry 1969;8:378–383

    PubMed  CAS  Google Scholar 

  • Shimizu T, Nomiyama S, Hirata F et al. Indoleamine 2,3-dioxygenase. Purification and some properties. J Biol Chem 1978;253:4700–4706

    PubMed  CAS  Google Scholar 

  • Singel DJ, Lancaster JR. Electron paramagnetic resonance spectroscopy and nitric oxide biology. In Feelisch M, Stamler J, eds. Methods in Nitric Oxide Research. Wiley, Chichester, UK. 1996,341–356

    Google Scholar 

  • Singh RJ, Hogg N, Mchaourab HS et al. Physical and chemical interactions between nitric oxide and nitroxides. Biochim Biophys Acta 1994;1201:437–441

    PubMed  Google Scholar 

  • Stadler J, Trockfeld J, Schmalix WA et al. Inhibition of cytochromes P4501A by nitric oxide. Proc Natl Acad Sci USA 1994;91:3559–3563

    PubMed  CAS  Google Scholar 

  • Stevens TH, Brudvig GW, Bocian FP et al. Structure of cytochrome a 3-Cua 3 couple in cytochrome c oxidase as revealed by nitric oxide binding studies. Proc Natl Acad Sci USA 1979;76:3320–3324

    PubMed  CAS  Google Scholar 

  • Stone JR, Marietta MA Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states. Biochemistry 1994;33:5636–5640

    PubMed  CAS  Google Scholar 

  • Stone JR, Marietta MA. Heme stoichiometry of heterodimeric soluble guanylate cyclase. Biochemistry 1995a;34:14668–14674

    Google Scholar 

  • Stone JR, Marietta MA. The ferrous heme of soluble guanylate cyclase: formation of hexacoordinate complexes with carbon monoxide and nitrosomethane. Biochemistry 1995b;34:16397–16403

    Google Scholar 

  • Stone JR, Marietta MA. Spectral and kinetic studies on the activation of soluble guanylate cyclase by nitric oxide. Biochemistry 1996;35:1093–1099

    PubMed  CAS  Google Scholar 

  • Stone JR, Sands RH, Dunham WR et al. Electron paramagnetic resonance spectral evidence for the formation of a pentacoordinated nitrosyl-heme complex on soluble guanylate cyclase. Biochem Biophys Res Commun 1995;207:572–577

    PubMed  CAS  Google Scholar 

  • Stuehr DJ, Nathan CF. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 1989;169:1543–1555

    PubMed  CAS  Google Scholar 

  • Subczynski WK, Hyde JS. Spin-lable NO-metry in lipid bilayer membranes. Chapter 5, present volume. 1998

    Google Scholar 

  • Subczynski WK, Lomnicka M, Hyde JS. Permeability of nitric oxide through lipid bilayer membranes. Free Rad Res 1996;343–349

    Google Scholar 

  • Thomas SR, Mohr D, Stocker R. Nitric oxide inhibits indoleamine 2,3-dioxygenase activity in interferon-g primed mononuclear phagocytes. J Biol Chem 1994;269:14457–14464

    PubMed  CAS  Google Scholar 

  • Tomita T, Ogura S, Imai Y et al. Effects of GTP on bound nitric oxide of soluble guanylate cyclase probed by resonance Raman spectroscopy. Biochemistry 1997;36:10155–10160

    PubMed  CAS  Google Scholar 

  • Torres AL, Thompson AM. Nitric oxide in the equatorial pacific boundary layer: SAGA3 measurements. J Geophys Res 1993;98:949–954

    Google Scholar 

  • Trittelvitz E, Sick H, Gersonde K. Conformational isomers of nitrosyl-haemoglobin. An electron-spin resonance study. Eur J Biochem 1972;31:578–584

    PubMed  CAS  Google Scholar 

  • Tsai A, Wei C, Kulmacz RJ. Interaction between nitric oxide and prostaglandin H synthase. Arch Biochem Biophys 1994;313:367–372

    PubMed  CAS  Google Scholar 

  • Uppenbrink J, Hanson B. Tropospheric processes. Science 1997;276:1039

    Google Scholar 

  • Vanhoutte PM. The end of the quest? Nature 1987;327:459–460

    PubMed  CAS  Google Scholar 

  • Vanin AF. Identification of divalent iron complexes with cysteine in biological systems by the EPR method. Biokhimia 1967;32:277–282 (English translation 228-232)

    CAS  Google Scholar 

  • Vanin AF, Blumenfeld LA, Chetverikov AG. The investigation of nonheme iron complexes in cells and tissue by EPR method. Biofizika 1967;12:829–841 (English translation 829-841)

    PubMed  CAS  Google Scholar 

  • Vanin AF, Kleschyov AL. EPR detection and biological implications of nitrosyl non-heme iron complexes. Chapter 3, present volume 1998

    Google Scholar 

  • Vanin AF, Nalbandyan RM. Free radicals of a new type in yeast cells. Biofizika 1965;10:167–168 (English translation 184-186)

    PubMed  CAS  Google Scholar 

  • Vanin AF, Nalbandyan RM. Free radicals states with localization of an unpaired electon on the sulphur atom in yeast cells. Biofizika 1966;11:178–179 (English translation 201-203)

    PubMed  CAS  Google Scholar 

  • Vanin AF, Vakhnina LV, Chetverikov AG. Nature of the EPR signals of a new type found in cancer tissues. Biofizika 1970;15:1044–1051 (English translation 1082-1089)

    PubMed  CAS  Google Scholar 

  • Victorin K. Review of the genotoxicity of nitrogen oxides. Mutation Res 1994;317:43–55

    PubMed  CAS  Google Scholar 

  • Vincent SR, ed. Nitric Oxide in the Nervous System: Neuroscience Perspectives. Academic Press, San Diego, USA 1995

    Google Scholar 

  • Vithayathil AJ, Ternberg JL, Commoner B. Changes in electron spin resonance signals of rat liver during chemical carcinogenesis. Nature 1965;207:1246–1249

    PubMed  CAS  Google Scholar 

  • Wang J, Rousseau DL, Abu-Soud HM et al. Heme coordination of NO in NO synthase. Proc Natl Acad Sci USA 1994;91:10512–10516

    PubMed  CAS  Google Scholar 

  • Weiss G, Goossen B, Doppler W et al. Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway. EMBO J 1993;12:3651–3657

    PubMed  CAS  Google Scholar 

  • Weiss G, Werner-Felmayer G, Werner ER et al. Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J Exp Med 1994;180:969–976

    PubMed  CAS  Google Scholar 

  • Wennmalm A, Lanne B, Petersson A-S. Detection of endothelium-derived factor in human plasma in the basal state and following ischemia using electron paramagnetic resonance spectrometry. Anal Biochem 1990;187:359–363

    PubMed  CAS  Google Scholar 

  • Werner ER, Werner-Felmayer G, Fuchs D et al. Parallel induction of tetrahydrobiopterin biosynthesis and indoleamine 2,3-dioxygenase activity in human celles and cell lines by interferon-g. Biochem J 1989;262:861–866

    PubMed  CAS  Google Scholar 

  • Whittaker JW. Molecular paramagnetic resonance of gas-phase nitric oxide. J Chem Educ 1991;68:421–423

    CAS  Google Scholar 

  • Wilcox DE, Smith RP. Detection and quantification of nitric oxide using electron magnetic resonance spectroscopy. Methods: A Companion to Methods Enzymol 1995;7:59–70

    CAS  Google Scholar 

  • Willis D, Tomlinson A, Frederick R et al. Modulation of heme oxygenase activity in rat brain and spleen by inhibitors and donors of nitric oxide. Biochem Biophys Res Commun 1995; 214:1152–1156

    PubMed  CAS  Google Scholar 

  • Wink DA, Osawa Y, Darbyshire JF et al. Inhibition of cytochromes P450 by nitric oxide and a nitric oxide-releasing agent. Arch Biochem Biophys 1993;300:115–123

    PubMed  CAS  Google Scholar 

  • Woolum JC, Commoner B. Isolation and identification of a paramagnetic complex from the livers of carcinogen-treated rats. Biochim Biophys Acta 1970,201:131–140

    PubMed  CAS  Google Scholar 

  • Woolum JC, Tiezzi E, Commoner B. Electron spin resonance of iron-nitric oxide complexes with amino acids, peptides and proteins. Biochim Biophys Acta 1968,160:311–320

    PubMed  CAS  Google Scholar 

  • Ye RW, Averill BA, Tiedje JM. Denitrification: production and consumption of nitric oxide. Appl Environm Microbiol 1994;60:1053–1058

    CAS  Google Scholar 

  • Yonetani T, Yamamoto H, Erman JE et al. Electron properties of hemoproteins. V. Optical and electron paramagnetic characteristics of nitric oxide derivatives of metalloporphyrin-apo-hemoprotein complexes. J Biol Chem 1972;247:2447–2455

    PubMed  CAS  Google Scholar 

  • Yoshimura T, Fujii S, Yokoyama H et al. In vivo electron paramagnetic resonance imaging of NO-bound iron complex in a rat head. Chem Lett 1995;309–310

    Google Scholar 

  • Yoshimura T, Yokoyama H, Fujii S et al. In vivo EPR detection and imaging of endogenous nitric oxide in lipopolysaccharide-treated mice. Nature Biotechnology 14; 1996:992–994

    PubMed  CAS  Google Scholar 

  • Zakhary R, Gaine SP, Dinerman JL et al. Heme oxygenase-2: endothelial and neuronal localization and role in endothelium-dependent relaxation. Proc Natl Acad Sci USA 1996;93:795–798

    PubMed  CAS  Google Scholar 

  • Zavoisky E. Paramagnetic relaxation of liquid solutions for perpendicular fields. Journal of Physics (USSR) 1945;9:211–216

    Google Scholar 

  • Zumft WG. The biological role of nitric oxide in bacteria. Arch Microbiol 1993;160:253–264

    PubMed  CAS  Google Scholar 

  • Zweier JL, Kuppusamy P. In vivo EPR spectroscopy of free radicals in the heart. Environm Health perspect 1994;102: 45–51

    CAS  Google Scholar 

  • Zweier JL, Wang P, Kuppusamy P. Direct measurement of nitric oxide generation in the ischemic heart using electron paramagnetic resonance spectroscopy. J Biol Chem 1995;270:304–307

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Henry, Y.A., Guissani, A. (1998). EPR Detection of Nitrosylated Compounds : Introduction with some Historical Background. In: Lukiewicz, S., Zweier, J.L. (eds) Nitric Oxide in Transplant Rejection and Anti-Tumor Defense. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5081-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5081-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7311-7

  • Online ISBN: 978-1-4615-5081-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics