Skip to main content

Non-Linear Analysis of Vasomotion Oscillations in Reflected Light Measurements

  • Chapter
Oxygen Transport to Tissue XX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 454))

Abstract

Numerous studies attest to the fact that low frequency oscillations are present in measurements of blood flow, volume and diameter changes in the microvasculature. The presence of these oscillations has been known and studied for nearly a century (1, 2). While several low frequency oscillations have been detected, the most frequently reported and studied has a frequency of Ü0.1 Hz, or 6 cycles/minute, i.e., a period of about 10 seconds. The commonly accepted explanation of the Ü0.1Hz oscillations is by mechanisms either myogenic (3, 4) and/or neurogenic (5, 6) in origin acting on resistance vessels (arteries and arterioles) to change their diameter with the effect that the modulation of flow rate produces oscillatory changes in saturation and volume. The mechanisms and dynamics underlying these changes in flow rate are complex, and as yet not well understood, and it is uncertain if they have a functional role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bayliss WM. On the local reactions of the arterial wall to changes in internal pressue. J. Physiol. 1902;28:220.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Wiedeman MR Effect of Venous Flow on Frequency of Venous Vasomotion in the Bat Wing. Circulation Research 1957;:641–644.

    Google Scholar 

  3. Folkow B. Description of the myogenic hypothesis. Circ. Res. 1964;20:327–335.

    Google Scholar 

  4. Gustafsson H. Vasomotion and underlying mechanisms in small arteries. Acta Physiologica Scandinavica 1993;149 (Suppl. 614): 1–44.

    Article  Google Scholar 

  5. Golanov EV, Yamamoto S, Reis D. Spontaneous waves of cerebral blood flow associated with a pattern of electrocortical activity. J. Am. Physiol. 1994;266 (Regulatory Integrative Comp. Physiol. 35):R204–R214.

    CAS  Google Scholar 

  6. Golanov EV, Reis D. Vasodilation evoked from medulla and cerebellum is coupled to bursts of cortical EEG activity in rats. J. Am. Physiol. 1995;268 (Regulatory Integrative Comp. Physiol. 38):R454–R467.

    CAS  Google Scholar 

  7. Mayhew JEW, Askew S, Zheng Y, et al. Cerebral vasomotion: 0.1 Hz oscillation in reflected light imaging of neural activity. Neuroimage 1996;4:183–193.

    Article  CAS  PubMed  Google Scholar 

  8. Berwick J, Askew S, Hou Y, et al. Optical imaging of V-signal oscillations in the microcirculation of the rat cerebral cortex and testes. Neurosciences Abstracts J-67 1997.

    Google Scholar 

  9. Hundley WG, Renalado GJ, Levasseur JE, Kontos HA. Vaosmotion in cerebral microcirculatrion of awake rabbits. Am. J. Physiol. 1988;254(23):H67–H71.

    CAS  PubMed  Google Scholar 

  10. Schmidt JA, P. Borgstrom, S.P. Bruttig, A. Fronek, M. Intaglietta. Vasomotion as a flow dependent phenomenon. In: Allegra C, Intaglietta M, Messmer K, eds. Vasomotion and Flow Motion. Prog Appl.Microcirc. Basel: Karger., 1993:34–51. vol 20).

    Google Scholar 

  11. Janssen BJA, Oosting J, Slaaf DW, Persson PB, Struijker-Boudier HA. Hemodynamic basis of oscillations in systemic arterial pressure in conscious rats. Americal Journal of Physiology 1995;269:H62–H71.

    CAS  Google Scholar 

  12. Dora E, Kovach AGB. Metabolic and vascular volume oscillations in the cat brain cortex. Acta Physilo. Acad. Scien. Hun. 1981;57(3):261–275.

    CAS  Google Scholar 

  13. Griffith TM, Edwards DH. Mechanisms underlying chaotic vasomotion in isolated resistance arteries: roles of calcium and EDRF. Biorheology 1993;30:333–347.

    CAS  PubMed  Google Scholar 

  14. Griffith TM, Edwards DH. Fractal analysis of roth of smooth muscle Ca fluxes in genesis of chaotic arterial pressure oscillations. Am. J.Physiol. 1994;266 (Heart Circ. Physiol.):H1801–H1811.

    CAS  PubMed  Google Scholar 

  15. Tsuda I, Tahara T, Iwanaga H. Chaotic pulsation in human capillary vessels and its dependence on mental and physical conditions. International Journal of Bifurcation and Chaos 1992;2:313–324.

    Article  Google Scholar 

  16. Cavalcanti S, Ursino M. Chaotic oscillations in microvessel arterial networks. Annals of Biomedical Engineering 1996:24:37–47.

    Article  CAS  PubMed  Google Scholar 

  17. Grassberger PaP, I. Measuring strange attractors. Physica D 1983:189–208.

    Google Scholar 

  18. Rosenstein MT, J.J. C, deLuca CJ.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 1993;65:117–134.

    Article  Google Scholar 

  19. Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD. Testing for nonlinearity in time series: the method of surrogate data. Physica D 1992;58:77–94.

    Article  Google Scholar 

  20. Kantz H. A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Rev. A. 1994;185:77–87.

    Google Scholar 

  21. Mindlin GB, Gilmore R. Topological analysis and synthesis of chaotic time series. Physica D 1992;58:229–242.

    Article  Google Scholar 

  22. Gilmore R. A new approach for testing for chaos, with applications in finance and economics. Int. J of Bifurcation and Chaos 1993;3:583–587.

    Article  Google Scholar 

  23. Leontaritis IJ, Billings SA. Input-output parametric models for nonlinear systems-part I: deterministic nonlinear systems. Int J. of Control 1985;41:303–328.

    Article  Google Scholar 

  24. Leontaritis IJ, Billings SA. Input-output parametric models for nonlinear systems-part II: stochastic nonlinear systems. Int J. of Control 1985;41:329–344.

    Article  Google Scholar 

  25. Chen S, Billings SA. Representations of nonlinear systems: the Narmax model. Int J. of Control 1989;49:1605–1629.

    Google Scholar 

  26. Billings SA, Chen S, Korenberg MJ. Identification of MIMO nonlinear systems using a forward-regression orthogonal estimator. Int J. of Control 1989;49:2157–2189.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Coca, D., Zheng, Y., Mayhew, J.E.W., Billings, S.A. (1998). Non-Linear Analysis of Vasomotion Oscillations in Reflected Light Measurements. In: Hudetz, A.G., Bruley, D.F. (eds) Oxygen Transport to Tissue XX. Advances in Experimental Medicine and Biology, vol 454. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4863-8_68

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4863-8_68

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7206-6

  • Online ISBN: 978-1-4615-4863-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics