Skip to main content

Response Time of Myocardial Oxygen Consumption to Cardiac Work Jumps at 28°C Varies with Exogenous Carbon Substrate

  • Chapter
Oxygen Transport to Tissue XX

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 454))

Abstract

The adaptation of cardiac oxidative phosphorylation to changing cardiac work load has been investigated in many ways, but the precise regulatory mechanisms are still unknown. Our laboratory has focused on the time course of the first phase of the response of cardiac oxidative phosphorylation and high-energy phosphates in response to quick changes in cardiac workload. 1,2 To quantitate the time course of the response of oxidative phosphorylation to changed ATP hydrolysis, we determine the response time of cardiac mitochondrial oxygen consumption (tmito ), by correcting the response of coronary venous oxygen concentration for diffusion and intravascular delays and for oxygen dissociation from myoglobin.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Van Beek JHGM, Westerhof N. Response time of cardiac mitochondrial oxygen consumption to heart rate steps. Am J Physiol 1991; 260: H613–H625.

    PubMed  Google Scholar 

  2. Eijgelshoven MHJ, van Beek JHGM, Mottet I, Nederhoff MGJ, van Echteld CJA, Westerhof N. Cardiac high-energy phosphates adapt faster than oxygen consumption to changes in heart rate. Circ Res 1994; 75:751–759.

    Article  CAS  PubMed  Google Scholar 

  3. From AHL, Zimmer SD, Michurski SP, Mohanakrishnan P, Ulstadt VK, Thoma WJ, Uğurbil K. Regulation of the oxidative phosphorylation rate in the intact cell. Biochemistry 1990; 29: 3731–3743.

    Article  CAS  PubMed  Google Scholar 

  4. Laughlin MR, Taylor J, Chesnick AS, DeGroot M, Balaban RS. Pyruvate and lactate metabolism in the in vivo dog heart. Am J Physiol 1993; 264: H2068–dyH2079.

    CAS  PubMed  Google Scholar 

  5. Scholz TD, Laughlin MR, Balaban RS, Kupriyanov VV, Heineman FW. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts. Am J Physiol 1995; 268:H82–H91.

    CAS  PubMed  Google Scholar 

  6. Koretsky AP, Balaban RS. Changes in pyridine nucleotide levels alter oxygen consumption and extra-mito-chondrial phosphates in isolated mitochondria: a 3IP-NMR and NAD(P)H fluorescence study. Biochim Biophys Acta 1987; 893: 398–408.

    Article  CAS  PubMed  Google Scholar 

  7. Zimmer SD, Uğurbil K, Michurski SP, Mohanakrishnan P, Ulstadt VK, Foker JE, From AHL. Alterations in oxidative function and regulation in the post-ischemic myocardium. J Biol Chem 1989; 264: 402–411.

    Google Scholar 

  8. Kobayashi K, Neely JR. Control of maximum rates of glycolysis in rat cardiac muscle. Circ Res 1979; 44: 166–175.

    Article  CAS  PubMed  Google Scholar 

  9. Chapman JB. Fluorometric studies of oxidative metabolism in isolated papillary muscle of the rabbit. J Gen Physiol 1972; 59: 135–154.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Williamson JR. Glycolytic control mechanisms: I. Inhibition of glycolysis by acetate and pyruvate in the isolated perfused rat heart. J Biol Chem 1965; 240: 2308–2321.

    CAS  PubMed  Google Scholar 

  11. Hak JB, van Beek JHGM, van Wijhe MH, Westerhof N. Influence of temperature on the response time of mitochondrial oxygen consumption in isolated rabbit heart. J Physiol (London) 1992; 447:17–31.

    Google Scholar 

  12. Van Beek JHGM, Tian X, Zuurbier CJ, de Groot B, van Echteld CJA, Eijgelshoven MHJ, Hak JB. The dynamic regulation of myocardial oxidative phosphorylation. Analysis of the response time of oxygen consumption. Moll Cell Biochem. In press.

    Google Scholar 

  13. Snedecor GW, Cochran WG. Statistical Methods. Seventh Edition. Ames: Iowa State University Press; 1980.

    Google Scholar 

  14. Van Beek JHGM, Bouma P, Westerhof N. Oxygen uptake in saline-perfused rabbit heart is decreased to a similar extent during reductions in flow and in arterial oxygen concentration. Pflügers Arch. 1989; 414: 82–88.

    Article  PubMed  Google Scholar 

  15. Mootha VK, Arai AE, Balaban RS. Maximum oxidative phosphorylation capacity of the mammalian heart. Am J Physiol 1997; 272: H769–H775.

    CAS  PubMed  Google Scholar 

  16. Van Beek JHGM, Hak JB, van Wijhe MH, Westerhof N. The control exerted by oxidative phosphorylation on respiration in the intact heart. In: Westerhoff HV, Snoep JL, Wijker JE, Sluse FE, Kholodenko BN, editors. Biothermokinetics of the Living Cell. Amsterdam: BioThermoKinetics Press; 1996, 119–123.

    Google Scholar 

  17. Van Beek JHGM, Hak JB, van Wijhe MH, Eijgelshoven MHJ, Westerhof N. The myocardial mitochondrial aerobic capacity is partially limiting for cardiac oxygen consumption and contractility [Abstract]. Pflügers Arch (Europ J Physiol) 1995; 430 Suppl 4: R9.

    Google Scholar 

  18. De Groot B, Dijk FJ, van Beek JHGM. Response of cardiac respiration to steps in heart rate in not slowed after reduction of mitochondrial capacity in normal and pressure overloaded hearts [Abstract]. Proceedings of the International Union of Physiological Sciences, XXXIIIrd Congress, St Petersburg. 1997; (P063.06).

    Google Scholar 

  19. Zuurbier CJ, van Beek JHGM. Mitochondrial response to heart rate steps in isolated rabbit heart is slowed after myocardial stunning. Circ Res 1997; 81:69–75.

    Article  CAS  PubMed  Google Scholar 

  20. Harrison GJ, de Groot B, van Wijhe MH, Zuurbier CJ, van Beek JHGM. On the importance of creatine kinase for metabolic response times during rapidly increased work loads in isolated rabbit heart. Proceedings of the International Union of Physiological Sciences, XXXIIIrd Congress, St Petersburg. 1997; (P063.01).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes H. G. M. van Beek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tian, X., van Beek, J.H.G.M. (1998). Response Time of Myocardial Oxygen Consumption to Cardiac Work Jumps at 28°C Varies with Exogenous Carbon Substrate. In: Hudetz, A.G., Bruley, D.F. (eds) Oxygen Transport to Tissue XX. Advances in Experimental Medicine and Biology, vol 454. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4863-8_60

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4863-8_60

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7206-6

  • Online ISBN: 978-1-4615-4863-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics