Skip to main content

Phenolic Acids and Tannins in Rapeseed and Canola

  • Chapter
Canola and Rapeseed

Abstract

The utilization of rapeseed meal in human food formulations has been considered for many years. However, due to the presence of some antinutritional factors in the meal, this goal has not been achieved. Glucosinolates and hulls were first considered to be the most important limiting factors in the use of rapeseed meal in food formulations. In spite of the introduction of double-zero rapeseed varieties (canola) in many countries and the invention of a number of methods for dehulling (Sosulski and Zadernowski 1981; Greilsamer 1983; Diosady et al. 1986), the use of rapeseed meal as a source of food-grade protein is still limited by the presence by small amounts of glucosinolates as well as other undesirable components such as phytic acid and phenolic compounds. The content of phenolics in rapeseed flour is much higher than that found in flours obtained from other oleaginous seeds and accounts for about 30 times of the amount of phenolics in soybean flour (Table 11-1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • AOAC 1965. Official Methods of Analysis. 10th ed. Washington: Association of Official Analytical Chemists.

    Google Scholar 

  • Appelqvist, L. A. 1972. Chemical constituents of rapeseed, in Rapeseed, eds. L. A. Appelqvist and R. Ohlson. Amsterdam: Elsevier Publ. 168–180.

    Google Scholar 

  • Arai, S. H.; Suzuki, H.; Fujimaki, M.; and Sakwiai, Y. 1966. Flavor components in soybean II. Phenolic acids in defatted soybean flour. Agric. Biol. Chem. 30: 364–369.

    Article  CAS  Google Scholar 

  • Armstrong, W. D.; Featherston, W. R.; and Rogler, J. C. 1974. Effect of bird-resistant sorghum grain and various commercial tannins on chick performance. Poultry Sci. 53:2,137–2,142.

    Article  CAS  Google Scholar 

  • Artz, W. E.; Swanson, B. G.; Sendzicki, J.; Rasyid, A.; and Birch, R. E. W. 1986. Plant Proteins: Applications, Biological Effects and Chemistry, ACS Symposium Series 312, ed. R. L. Ory. Washington: American Chemical Society. 126–137.

    Chapter  Google Scholar 

  • Austin, F. L., and Wolff, I. A. 1968. Sinapine and related esters in seed meal of Crambe abyssinica. J. Agric. Food Chem. 16: 132–135.

    Article  CAS  Google Scholar 

  • Bate-Smith, E. C., and Ribereau-Gayon, P. 1959. Leucoanthocyanins in seeds. Qual. Plant. Mater. Vegetable 5: 189–198.

    Article  CAS  Google Scholar 

  • Bell, J. M., and Shires, A. 1982. Composition and digestibility by pigs of hull fractions from rapeseed cultivars with yellow or brown seed coats. Can. J. Animal Sci. 62: 557–565.

    Article  Google Scholar 

  • Blair, R., and Reichert, R. D. 1984. Carbohydrate and phenolic constituents in a comprehensive range of rapeseed and canola fractions: nutritional significance for animals. J. Sci. Food Agric. 35: 29–35.

    Article  CAS  Google Scholar 

  • Butler, E. J.; Pearson, A. W.; and Fenwick, G. R. 1982. Problems that limit the use of rapeseed meal as a protein source in poultry diets. J. Sci. Food Agric. 33: 866–875.

    Article  CAS  Google Scholar 

  • Byerrum, R. U., and Wing, R. E. 1953. The role of choline in some metabolic reactions of Nicotiana rustica. J. Biol. Chem. 205: 637–642.

    CAS  Google Scholar 

  • Calderon, P.; Van Buren, J.; and Robinson, W. B. 1968. Factors influencing the formation of precipitates and hazes by gelatin and condensed and hydrozable tannins. J. Agric. Food Chem. 16: 479–482.

    Article  CAS  Google Scholar 

  • Clandinin, D. R. 1961. Effect of sinapin, the bitter substance in rapeseed oil meal, on the growth of chickens. Poultry Sci. 40: 484–487.

    Article  CAS  Google Scholar 

  • Clandinin, D. R., and Heard, J. 1968. Tannins in prepress-solvent and solvent processed rapeseed meal. Poultry Sci. 47: 688–689.

    Article  Google Scholar 

  • Clandinin, D. R., and Robblee, A. R. 1981. Rapeseed meal in animal nutrition. II. Nonruminant animals. J. Am. Oil Chem. Soc. 58: 682–686.

    Article  CAS  Google Scholar 

  • Dabrowski, K., and Siemieniak, B. 1987. Removal of sinapine from rapeseed using various solvents and extractions conditions, in Proceedings, Seventh International Rapeseed Conference, vol. VI. Poznan, Poland. 1,476–1,481.

    Google Scholar 

  • Dabrowski, K., and Sosulski, F. 1983. Extraction of phenolic compounds from canola during protein concentration and isolation, in Proceedings, Sixth International Rapeseed Conference, vol. II. Paris. 1,338–1,342.

    Google Scholar 

  • Dabrowski, K., and Sosulski, F. 1984. Composition of free and hydrozylable phenolic acids in defatted flours of 10 oilseeds. J. Agric. Food Chem. 32: 128–130.

    Article  CAS  Google Scholar 

  • Desphande, S. S.; Cheryan, M.; and Salunkhe, D. K. 1986. Tannin analysis of food products. CRC Crit. Rev. Food Sci. Nutr. 24: 401–449.

    Article  Google Scholar 

  • Diosady, L. L.; Naczk, M.; and Rubin, L. J. 1985. The effect of ammonia concentration on the properties of the canola meals produced by ammonia-methanol/hexane system. Food Chem. 18: 121–130.

    Article  CAS  Google Scholar 

  • Diosady, L. L.; Tar, C. G.; Rubin, L. J.; and Naczk, M. 1987. Scale-up of the production of glucosinolate-free canola meal. Acta Alimentaria 16: 167–179.

    CAS  Google Scholar 

  • Durkee, A. B. 1971. The nature of tannins in rapeseed (Brassica campestris). Phytochemistry 10:1,583–1,585.

    Article  CAS  Google Scholar 

  • Durkee, A. B., and Harbome, J. B. 1973. Flavanol glycosides in Brassica and Sinapis. Phytochemistry. 12:1, 085–1, 089.

    Article  CAS  Google Scholar 

  • Durkee, A. B., and Thivierge, P. A. 1975. Bound phenolic acids in Brassica and Sinapis oilseeds. J. Food Sci. 40: 820–822.

    Article  CAS  Google Scholar 

  • Fenton, T. W.; Leung, J.; and Clandinin, D. R. 1980. Phenolic components of rapeseed meal. J. Food Sci. 45:1,702–1,705.

    Article  CAS  Google Scholar 

  • Fenwick, G. R.; Curl, C. L.; Butler, E. J.; Greenwood, N. M.; and Pearson, A. W. 1984a. Rapeseed meal and egg taint: effects of low glucosinolates Brassica napus meal, dehulled meal, and hulls, and of neomycin. J. Sci. Food Agric. 35: 749–761.

    Article  CAS  Google Scholar 

  • Fenwick, G. R.; Curl, C. L.; Pearson, A. W.; and Butler, E. J. 1984b. The treatment of rapeseed meal and its effect on the chemical composition and egg tainting potential. J. Sci. Food Agric. 35: 757–761.

    Article  CAS  Google Scholar 

  • Fenwick, G. R.; Hobson-Frohock, A.; Land, D. G.; and Curtis, R. F. 1979. Rapeseed meal and egg taint: treatment of rapeseed meal to reduce tainting potential. Br. Poultry Sci. 20: 323–329.

    Article  CAS  Google Scholar 

  • Fenwick, G. R., and Hoggan, S. A. 1976. The tannin content of rapeseed meals. Br. Poultry Sci. 17: 59–62.

    Article  CAS  Google Scholar 

  • Fenwick, G. R.; Pearson, A. W.; Greenwood, N. M.; and Butler, E. G. 1981. Rapeseed meal tannins and egg taint. Anim. Feed Sci. Technol. 6: 421–431.

    Article  CAS  Google Scholar 

  • Finot, P. A. 1983. Influence of processing on the nutritional value of proteins. Qual. Plant.-Plant Foods Hum. Nutr. 32: 439–453.

    Article  CAS  Google Scholar 

  • Foo, L. Y., and Porter, L. J. 1980. The phytochemistry of protocyanidin polymers. Phytochemistry 19:1,747–1,754.

    Article  CAS  Google Scholar 

  • Ford, J. E., and Hewitt, D. 1974. Protein quality in cereals and pulses. 2. Influence of polyethylene glycol on nutritional availability of methionine in sorghum (Sorghum vulgare pers), field beans (Vicia faba L.), and barley. Br. J. Nutr. 42: 317–323.

    Article  Google Scholar 

  • Gandhi, V. M.; Cheriyan, K. K.; Mulky, M. J.; and Menon, K. K. G. 1975. Utilization of nontraditional indigenous oilseed meal. 2. Studies with the detoxified salseed meal. J. Oil Technol. Assoc. India (Bombay) 7: 44.

    CAS  Google Scholar 

  • Goh, Y. K.; Shires, A. R.; Robblee, A. R.; and Clandinin, D. R. 1982. The effect of arnmoniation on the sinapine content of canola meal. Br. Poultry Sci. 23: 121–128.

    Article  CAS  Google Scholar 

  • Goldstein, J., and Swain, T. 1965. The inhibition of enzymes by tannins. Phytochemistry 4: 185–192.

    Article  CAS  Google Scholar 

  • Greilsamer, B. 1983. Depeliculage-Tirage des graines de colza (Dehulling and extraction of rapeseed), in Proceedings of Sixth International Rapeseed Conference, vol. 2, Paris. 1,496–1,501.

    Google Scholar 

  • Gustayson, K. H. 1954. Interaction of vegetable tannins with polyamides as proof of the dominant function of the peptide bond of collagen for its binding of tannins. J. Poly. Sci. 12: 317–324.

    Article  Google Scholar 

  • Gustayson, K. H. 1956. The chemistry of tanning process. New York: Academic Press.

    Google Scholar 

  • Hagerman, A. E., and Butler, L. G. 1980. Condensed tannin purification and characterization of tannin associated proteins. J. Agric. Food Chem. 28: 947–952.

    Article  CAS  Google Scholar 

  • Hagerman, A. E., and Butler, L. G. 1981. The specificity of proanthocyanidin-protein interaction. J. Biol. Chem. 256:4,494–4,497.

    CAS  Google Scholar 

  • Haslam, E. 1966. Chemistry of Vegetable Tannins. New York: Academic Press.

    Google Scholar 

  • Haslam, E. 1974. Polyphenol-protein interactions. Biochem. J. 139: 285–288.

    CAS  Google Scholar 

  • Haslam, E. 1979. Symmetry and promiscuity in procyanidin biochemistry. Phytochemistry 16:1,625–1,640.

    Article  Google Scholar 

  • Hobson-Frohock, A.; Land, D. G.; Griffiths, N. M.; and Curtis, R. F. 1973. Egg taints: association with trimethylamine. Nature 243: 303–305.

    Article  Google Scholar 

  • Kerber, E., and Buchloh, G. 1980. The sinapine content of crucifer seeds. Agnew. Bot. 54: 47–54.

    CAS  Google Scholar 

  • Kirk, L. D.; Mustakas, G. C.; and Griffin, E. L., Jr. 1966. Crambe seed processing improved feed meal by ammoniation. J. Am. Oil Chem. Soc. 43: 550–555.

    Article  CAS  Google Scholar 

  • Kozlowska, H.; Rotkiewicz, D. A.; Zademowski, R.; and Sosulski, F. W. 1983. Phenolic acids in rapeseed and mustard. J. Am. Oil Chem. Soc. 60:1,119–1,123.

    Article  CAS  Google Scholar 

  • Kozlowska, H.; Sabir, M. A.; Sosulski, F. W.; and Coxworth, E. 1975. Phenolic constituents of rapeseed flour. Can. Inst. Food Sci. Technol. J. 8: 160–163.

    CAS  Google Scholar 

  • Kozlowska, H., and Zademowski, B. 1988. Phenolic compounds of rapeseed as factors limiting the utilization of protein in nutrition. Presented at the Third Chemical Congress of North America. Toronto. June 5–10.

    Google Scholar 

  • Krygier, K.; Sosulski, F. W.; and Hogge, L. 1982. Free, esterified, and insoluble phenolic acids. 2. Composition of phenolic acids in rapeseed flour and hulls. J. Agric. Food Chem. 30: 334–336.

    Article  CAS  Google Scholar 

  • Kumar, R., and Singh, M. 1984. Tannins: their adverse role in ruminant nutrition. J. Agric. Food Chem. 32: 447–453.

    Article  CAS  Google Scholar 

  • Leung, J.; Fenton, T. W.; Mueller, M. M.; and Clandinin, D. R. 1979. Condensed tannins of rapeseed meal. J. Food Sci. 44:1,313–1,316.

    Article  CAS  Google Scholar 

  • Lo, M. T., and Hill, D. C. 1972. Composition of the aqueous extracts of rapeseed meals. J. Sci. Food Agric. 23: 823–830.

    Article  CAS  Google Scholar 

  • Loomis, W. D. 1974. Overcoming problems of phenolics of quinones in the isolation of plant enzymes and organelles. Methods Enzymol. 31: 528–544.

    Article  CAS  Google Scholar 

  • Loomis, W. D., and Battaile, J. 1966. Plant phenolic compounds and isolation of plant enzymes. Phytochemistry 5: 423–438.

    Article  CAS  Google Scholar 

  • McGregor, D. I.; Blake, J. A.; and M. D. Pickard. 1983. Detoxification of Brassica juncea with ammonia, in Proceedings of Sixth International Rapeseed Conference, vol. 2. Paris. 1,426–1,431.

    Google Scholar 

  • Maga, J. A., and Lorenz, K. 1973. Taste thresholds values for phenolic acids that can influence flavor properties of certain flours, grains, and oilseeds. Cereal Sci. Today 18: 326–329.

    CAS  Google Scholar 

  • Maga, J. A., and Lorenz, K. 1974. Gas-liquid chromatography separation of the free phenolic acid fractions in oilseed protein sources. J. Sci. Food Agric. 25: 797–802.

    Article  CAS  Google Scholar 

  • Makkar, H. P. S. 1989. Protein precipitation methods for quantification of tannins: a review. J. Agric. Food Chem. 37:1,197–1,202.

    Article  CAS  Google Scholar 

  • Martin-Tanguy, J.; Guillaume, J.; and Kossa, A. 1977. Condensed tannins in horse bean seeds: chemical structure and apparent effects on poultry. J. Sci. Food Agric. 28: 757–765.

    Article  CAS  Google Scholar 

  • Milic, B.; Stojanovic, S.; Vucurevic, N.; andTurcic, M. 1968. Chlorogenic and quinic acids in sunflower meal. J. Sci. Food Agric. 19: 108–113.

    Article  CAS  Google Scholar 

  • Mitaru, B. N.; Blair, R.; Bell, J. M.; and Reichert, R. D. 1982. Tannin and fiber contents of rapeseed and canola hulls. Can. J. Animal Sci. 62: 661–663.

    Article  CAS  Google Scholar 

  • Mole, S., and Waterman, P. G. 1987. Tannic acid and proteolytic enzymes: enzyme inhibition or substrate deprivation? Phytochemistry 26: 99–102.

    Article  Google Scholar 

  • Mueller, M. M.; Ryl, E.; Fenton, T. W.; and Clandinin, D. R. 1978. Cultivar and growing location differences on the sinapine content of rapeseed. Can. J. Animal Sci. 58: 579–583.

    Article  CAS  Google Scholar 

  • Naczk, M.; Diosady, L. L.; and Rubin, L. J. 1986. The phytate and complex phenol content of meals produced by alkanol-ammonia/hexane extraction of canola. Lebensm.-Wiss u. Technol. 19: 13–16.

    CAS  Google Scholar 

  • Naczk, M., and Shahidi, F. 1989. The effect of methanol-ammonia-water treatment on the content of phenolic acids of canola. Food Chem. 31: 159–164.

    Article  CAS  Google Scholar 

  • Neish, A. C. 1960. Biosynthetic pathways of aromatic compounds. Ann. Rev. Plant Physiol. 11: 55–80.

    Article  CAS  Google Scholar 

  • Oh, H. I.; Hoff, J. E.; Armstrong, G. S.; and Haff, L. A. 1980. Hydrophobic interaction in tannin-protein complexes. J. Agric. Food Chem. 28: 394–398.

    Article  CAS  Google Scholar 

  • Pearson, A. W.; Butler, E. J.; and Fenwick, G. R. 1980. Rapeseed meal and egg taint: the role of sinapine. J. Sci. Food Agric. 31: 898–904.

    Article  CAS  Google Scholar 

  • Rackis, J. J.; Honig, D. H.; Sessa, D. J.; and Steggerda, F. R. 1970. Flavor and flatulence factors in soybean protein products. J. Agric. Food Chem. 18: 977–982.

    Article  CAS  Google Scholar 

  • Ribereau-Gayon, P. 1972. Plant Phenolics. Edinburgh: Oliver and Boyd.

    Google Scholar 

  • Roux, D. G.; Ferreira, D.; and Botha, J. J. 1980. Structural considerations in predicting the utilization of tannins. J. Agric. Food Chem. 28: 216–222.

    Article  CAS  Google Scholar 

  • Rutkowski, A.; Barylco-Pikielna, N.; Kozlowska, H.; Borowski, J.; and Zawadska, L. 1977. Evaluation of soybean protein isolates and concentrates as meat additives to provide a basis for increasing utilization of soybean. USDA-ARS Grant No. 13: final report. Olsztyn, Poland.

    Google Scholar 

  • Shahidi, F., and Naczk, M. 1988. Effect of processing on the phenolic constituents of canola. Bulletin deLiason. No. 14 du Gruope Polyphenols, Narbonne, France. Compte-rendu des Joumees Internationales d’Etude et de l’Assemblee Generale 1988. St. Catherines, Canada. Aug. 16–19. 89–92.

    Google Scholar 

  • Shahidi, F., and Naczk, M. 1989a. Effect of processing on the content of condensed tannins in rapeseed meals: a research note. J. Food Sci. 54:1,082–1,083.

    Article  CAS  Google Scholar 

  • Shahidi, F., and Naczk, M. 1989b. Solvent extraction of tannins from canola. Presented at the 50th annual meeting of the Institute of Food Technologists, Chicago. June 25–29.

    Google Scholar 

  • Smyk, B., and Drabent, R. 1989. Spectroscopic investigation of the equilibria of the ionic forms of sinapic acid. Analyst. 114: 723–726.

    CAS  Google Scholar 

  • Sosulski, F. W. 1979. Organoleptic and nutritional effects of phenolic: review. J. Am. Oil Chem. Soc. 56: 711–715.

    Article  CAS  Google Scholar 

  • Sosulski, F. W.; Humbert, E. S.; Lin, M. J. Y.; and Card, J. W. 1977. Rapeseed-supplemented wieners. Can. Inst. Food Sci. Technol. J. 10: 9–12.

    Google Scholar 

  • Sosulski, F. W., andZademowski, R. 1981. Fractionation of rapeseed meal into flour and hull component. J. Am. Oil Chem. Soc. 58: 96–98.

    Article  Google Scholar 

  • Swain, T. 1979. Tannins and lignins, in Herbivores: Their Interaction with Secondary Plant Metabolites, ed. G. A. J. Rosenthal and D. Janzen. New York: Academic Press.

    Google Scholar 

  • Tantawy, B.; Robin, J. P.; and Tollter, M. T. 1983. Proceedings of Sixth International Rapeseed Conference, vol. 2, Paris. 1,313–1,320.

    Google Scholar 

  • Tzagoloff, A. 1963. Metabolism of sinapine in mustard plants. I. The degradation of sinapine into sinapic acid and choline. Plant Physiol. 38: 202–206.

    Article  CAS  Google Scholar 

  • Van Buren, J. P., and Robinson, W. B. 1969. Formation of complexes between protein and tannic acid. J. Agric. Food Chem. 17: 772–777.

    Article  Google Scholar 

  • Wade, S.; Tomioka, S.; and Moriguchi, I. 1969. Protein binding, 6. Binding phenols to bovine serum albumin. Chem. Pharm. Bull. 17: 320–323.

    Article  Google Scholar 

  • Yapar, Z., and Clandinin, D. R. 1972. Effect of tannins in rapeseed meal on its nutritional value for chicks. Poultry Sci. 51: 222–228.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kozlowska, H., Naczk, M., Shahidi, F., Zadernowski, R. (1990). Phenolic Acids and Tannins in Rapeseed and Canola. In: Shahidi, F. (eds) Canola and Rapeseed. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3912-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3912-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6744-4

  • Online ISBN: 978-1-4615-3912-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics