Skip to main content

Monte Carlo Methods on Advanced Computer Architectures

  • Chapter
Advances in Nuclear Science and Technology

Part of the book series: Advances in Nuclear Science and Technology ((ANST,volume 22))

Abstract

Monte Carlo methods describe a wide class of computational methods that utilize random numbers to perform a statistical simulation of a physical problem, which itself need not be a stochastic process (1). For example, Monte Carlo can be used to evaluate definite integrals, which are not stochastic processes, or may be used to simulate the transport of electrons in a space vehicle, which is a stochastic process. The name Monte Carlo came about during the Manhattan Project to describe the new mathematical methods being developed which had some similarity to the games of chance played in the casinos of Monte Carlo. Particle transport Monte Carlo is just one application of Monte Carlo methods, and will be the subject of this review paper. Other applications of Monte Carlo, such as reliability studies, classical queueing theory, molecular structure, the study of phase transitions, or quantum chromodynamics calculations for basic research in particle physics, are not included in this review. The reference by Kalos (1) is an introduction to general Monte Carlo methods and references to other applications of Monte Carlo can be found in this excellent book. For the remainder of this paper, the term Monte Carlo will be synonymous to particle transport Monte Carlo, unless otherwise noted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M.H. Kalos and P.A. Whitlock, Monte Carlo Methods, Wiley-Interscience, New York, 1986.

    Book  MATH  Google Scholar 

  2. D.B. Davis, “Parallel Computers Diverge,” High Technoloav, 16–22, February 1987.

    Google Scholar 

  3. R. Duncan, “A Survey of Parallel Computer Architectures,” IEEE Computer, 5–16, February 1990.

    Google Scholar 

  4. R.W. Hockney and C.R. Jesshope, parallel Computers, Adam Hilger, Ltd., Bristol, England, 1981.

    MATH  Google Scholar 

  5. M.J. Flynn, “Very High-speed Computing Systems,” Proc. IEEE, 54, 1901–1909, December 1966.

    Article  Google Scholar 

  6. J.J. Dongarra and I.S. Duff, “Advanced Architecture Computers,” ANL/MCS-TM-57, Rev. 2, Argonne National Laboratory, September 1989.

    Google Scholar 

  7. J.J. Dongarra, “Performance of Various Computers Using Standard Linear Equations Software in a Fortran Environment,” Tech. Mem. 23, Argonne Nat. Laboratory (1986).

    Google Scholar 

  8. I.Y. Bucher and M.L. Simmons, “Performance Assessment of Supercomputers,” LA-UR-85–1505, Los Alamos National Laboratory (1985).

    Google Scholar 

  9. G. Amdahl, “Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities,” Proc. Spring Joint Conf. AFIPS 30, 483–485 (1967).

    Google Scholar 

  10. H. S. Stone, High-Performance Computer Architecture, Addison-Wesley, Reading, Mass., 1987.

    Google Scholar 

  11. A. Wolfe, “Is Parallel Software Catching Up with the Hardware At Last?”, Supercomputing Review, 29–33, March 1989.

    Google Scholar 

  12. J. Worlton, “Towards a Science of Parallel Computation,” Computational Mechanics -Advances and Trends, AMD 75, 23–35, ASME, New York, 1987.

    Google Scholar 

  13. G.M. Johnson, “Exploiting Parallelism in Computational Science,” Future Generation Computer Systems 5, 319–337, 1989.

    Article  Google Scholar 

  14. J.L. Gustayson, G.R. Montry, and R.E. Benner, “Development of Parallel Methods for a 1024-node Hypercube,” SIAM J. Scientific and Statistical Computing, 9, 1988.

    Google Scholar 

  15. R.M. Hord, Parallel Supercomputing in S1MD Architectures, CRC Press, 1990.

    Google Scholar 

  16. Los Alamos Monte Carlo Group, “MCNP - A General Monte Carlo Code for Neutron and Photon Transport,” LA-7396-M (revised), Los Alamos National Laboratory (1981).

    Google Scholar 

  17. E.A. Straker, W.H. Scott, and N.R. Byrn, “The MORSE General Purpose Monte Carlo Multigroup Neutron and Gamma Ray Transport Code with Combinatorial Geometry,” ORNL-4585 (1970).

    Book  Google Scholar 

  18. Radiation Physics and Shielding Group, “McBEND. A General-Geometry Monte Carlo Program for Deep Penetration Radiation Studies. User Guide to Version 4,” Reactor Physics Division, AEE Winfrith (1985).

    Google Scholar 

  19. E. Troubetzkoy, H. Steinberg, and M. Kalos, “Monte Carlo Radiation Penetration Calculations on a Parallel Computer”, Trans. Am. Nucl. Soc. 17, 260 (1973).

    Google Scholar 

  20. F.B. Brown and W.R. Martin, “Monte Carlo Methods For Radiation Transport Analysis on Vector Computers”, Progress in Nuclear Energy 14, 269(1985).

    Google Scholar 

  21. W.R. Martin and F.B. Brown, “Present Status of Vectorized Monte Carlo for Particle Transport Analysis”,Int.J. Supercomputer Applications, 1, 11–32 (1987).

    Article  Google Scholar 

  22. W.R. Martin, “Successful Vectorization -Reactor Physics Monte Carlo Code,” Comp. Phys. Comm. 57, 68–77 (1989).

    Article  ADS  Google Scholar 

  23. F.W. Bobrowicz, J.E. Lynch, K.J. Fisher, and J.E. Tabor, “Vectorized Monte Carlo Photon Transport”, Parallel Computing, 1, 295(1984).

    Google Scholar 

  24. F.B. Brown, W.R. Martin, and D.A. Calahan, “Investigation of Vectorized Monte Carlo Algorithms,” Trans. Am. Nucl. Soc. 39, 755 (1981).

    Google Scholar 

  25. F.B. Brown, “Vectorized Monte Carlo,” Ph. D. thesis, The University of Michigan, Ann Arbor, Michigan (1981).

    Google Scholar 

  26. F.B. Brown, “Vectorized Monte Carlo Methods for Reactor Lattice Analysis”, Proc. Am. Nucl. Soc. Topical Meeting on Advances in Reactor Computations, Salt Lake City, 108–123 (1983).

    Google Scholar 

  27. F.B. Brown and M.R. Mendelson, “Vectorized Monte Carlo Applications in Reactor Physics Analysis”, Trans. Am. Nucl. Soc. 46, 727(1984).

    Google Scholar 

  28. K.J. Fisher, “Vectorized Monte Carlo Radiation Transport,” LA-UR-86–3737, Los Alamos National Laboratory (1986).

    Google Scholar 

  29. Y. Chauvet, “Multitasking a Vectorized Monte Carlo Algorithm on the Cray-X/MP2”, Cray Channels, 6, 3(1984).

    Google Scholar 

  30. Y. Chauvet, “Vectorization and Multitasking with a Monte Carlo Code for Neutron Transport Problems,” LANL-CEA Meeting on Recent Applications of the Monte Carlo Method, CEACONF 7902, 1985.

    Google Scholar 

  31. W.R. Martin and D.A. Calahan, “Vectorized Monte Carlo for Nonlinear Radiation Transport”, Trans. Am. Nucl. Soc. 43, 399 (1982).

    Google Scholar 

  32. W.R. Martin, J.A. Rathkopf, and P.F. Nowak, “Vectorized Monte Carlo Photon Transport for the Cray-XMP”, Trans. Am. Nucl. Soc. 50, 278(1985).

    Google Scholar 

  33. W.R. Martin, P.F. Nowak, and J.A. Rathkopf, “Monte Carlo Photon Transport on a Vector Supercomputer,” IBM J. of Res. and Dev. 30, 193–202, 1986.

    Article  Google Scholar 

  34. K. Asai, K. Higuchi, and J. Katakura, “Vectorization of the KENO-IV Code,” Nucl. Sci. and Eng. 92, 298(1986).

    Google Scholar 

  35. J.T. West, L.M. Petrie, and J.K. Fraley, “KENOIV/CG. The Combinatorial Geometry Version of the KENO Monte Carlo Criticality Safety Program,” ORNL/NUREG/CSD-7, Oak Ridge National Laboratory (1979).

    Google Scholar 

  36. F.B. Brown, “Vectorization of 3-D General-Geometry Monte Carlo”, Trans. Am. Nucl. Soc. 53, 283 (1986).

    Google Scholar 

  37. F.B. Brown and F.G. Bischoff, “Computational Geometry for Reactor Applications”, Trans. Am. Nucl. Soc. 57, 112–113 (1988).

    Google Scholar 

  38. K. Miura, “EGS4V: Vectorization of the Monte Carlo Cascade Shower Simulation Code EGS4”, Comp. Phys. Comm. 45, 127 (1987).

    Article  ADS  Google Scholar 

  39. S. Youssef, W. Martin, T.C. Wan, and S. Wilderman, “A Vectorized Monte Carlo Detector Simulation Program for Electromagnetic Interactions,” Comp. Phys. Comm. 57, 251–254 (1987).

    Article  ADS  Google Scholar 

  40. S. Youssef, “A New Algorithm for Object Oriented Ray Tracing”, Comput. Graphics Image Process. 18, 109 (1982).

    Article  Google Scholar 

  41. F.B. Brown, W.R. Martin, and D.A. Calahan, “A Discrete Sampling Method for Vectorized Monte Carlo Calculations,” Trans. Am. Nucl. Soc. 38, 354(1981).

    Google Scholar 

  42. A.J. Walker, “An Efficient Method for Generating Discrete Random Variables with General Distributions,” ACM_Trans. Math. Soft. 253, (1977).

    Google Scholar 

  43. D.F. Hollenbach, K.H. Reynolds, H.L. Dodds, N.F. Landers, and L.M. Petrie, “An Improved Method for Storing and Retrieving Tabular Data in a Scalar Monte Carlo Code,” Trans. Am. Nucl. Soc. 61, 191–191 (1990).

    Google Scholar 

  44. N.R. Smith, “Parallel Processing of Monte Carlo Methods,” Trans. Am. Nucl. Soc. 60, 365 (1990).

    Google Scholar 

  45. G. Meurant, “Domain Decomposition Methods for Partial Differential Equations on Parallel Computers,” Int. J. Supercomputer Applications 2,., No. 4, 5–12 (1988).

    Article  Google Scholar 

  46. T.F. Chan, “Domain Decomposition Algorithms and Computational Fluid Dynamics,” Int. J. Supercomputer Applications, 2, 72–83 (1988).

    Article  ADS  Google Scholar 

  47. P.F. Frederickson, R. Hiromoto, T.L. Jordan, B. Smith, and T. Warnock, “Pseudo-random trees in Monte Carlo,” Parallel Computing, 4, 175, 1984.

    Article  Google Scholar 

  48. D.E. Knuth, The Art of Computer Programming, vol. 2, Reading, MA Addison-Wesley, 1969.

    Google Scholar 

  49. P.F. Frederickson, R. Hiromoto, and J. Larson, “A Parallel Monte Carlo Transport Algorithm using a Pseudo-Random Tree to Guarantee Reproducibility,” Parallel Computing, 4, 175, 1984.

    Article  Google Scholar 

  50. K.O. Bowman and M.T. Robinson, “Studies of Random Number Generators for Parallel Processing,” Proc. Second Conference on Hypercube Multiprocessors, SIAM, 1986.

    Google Scholar 

  51. W.R. Martin, “Implementation of a Multitasked Random Number Generator”, Buffer 11, 41–43, National MFE Computer Center, Lawrence Livermore National Laboratory (November 1987).

    Google Scholar 

  52. A.E. Koniges, “Reproducible Random Number Generators for Multitaskers”, Buffer 11, 38–40, National MFE Computer Center, Lawrence Livermore National Laboratory (November 1987).

    Google Scholar 

  53. S.L. Anderson, “Random Number Generators on Vector Supercomputers and Other Advanced Architectures,” SIAM Review 32, 221–251 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  54. T.C. Wan and W.R. Martin, “Parallel Algorithms for Photon Transport Monte Carlo”, Trans. Am. Nucl. Soc. 53, 285 (1986).

    Google Scholar 

  55. W.R. Martin, T.C. Wan, T. Abdel-Rahman, and T.N. Mudge, “Monte Carlo Photon Transport on Distributed-memory and Distributed Memory Parallel Processors,” Int. J. Supercomputer Applications 1, 57–74 (1987).

    Article  Google Scholar 

  56. W.R. Martin, “Particle Transport Monte Carlo on Vector and Parallel Architectures”, Sixth IMACS International Symposium on Computer Methods for Partial Differential Equations, Bethlehem, PA, (1987).

    Google Scholar 

  57. J.P. Hayes, R. Jain, W.R. Martin, T.N. Mudge, L.R. Scott, K.G. Shin and Q.F. Stout, “Hypercube Computer Research at the University of Michigan,” Proc. Second Conference oa Hypercube Multiprocessors, SIAM, 1986.

    Google Scholar 

  58. L.M. Delves, “Monte Carlo Calculations of Neutron Diffusion on the ICL DAP,” Comp. Phys. Comm. 37, 295–301 (1985).

    Article  ADS  Google Scholar 

  59. J. Wood, H. Al-Bahadili, and S.A. Khaddaj, “Monte Carlo Photon Transport on Parallel Computers,” Nuclear Group, Mechanical Engineering Department, Queen Mary and Westfield College, London (1990).

    Google Scholar 

  60. E.R. Woodcock et al., “Techniques Used in the GEM Code for Monte Carlo Neutronics Calculations in Reactors and Other Systems,” Proc. Conf. Applications of Computing Methods to Reactor Problems, ANL-7050, Argonne National Laboratory (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martin, W.R. (1991). Monte Carlo Methods on Advanced Computer Architectures. In: Lewins, J., Becker, M. (eds) Advances in Nuclear Science and Technology. Advances in Nuclear Science and Technology, vol 22. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3392-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3392-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6498-6

  • Online ISBN: 978-1-4615-3392-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics