Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 311))

  • 303 Accesses

Abstract

The sarcoplasmic reticulum (SR), the membrane-bound calcium store of skeletal muscle, controls the contraction-relaxation cycle by raising and lowering the myoplasmic free calcium concentration, and consists of two continuous yet distinct regions, the free or non-junctional SR and the junctional SR, i.e., the area of terminal cisternae (TC) directly facing the transverse tubules (Costello et al., 1986; Fleischer and Inui, 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Blount, P. and L.J.P. Merlie, 1991, BiP associates with newly synthesized subunits of the mouse nicotinic receptor, J. Cell Biol.,113: 1125.

    Article  PubMed  CAS  Google Scholar 

  • Bole, D.G., L.M. Hendershot and J.F. Kenney, 1986, Posttranslational association of immunoglobulin heavy chain binding proteins with nascent heavy chains in non secreting and secreting hybridomas. J. Cell Biol., 102: 1558.

    Article  PubMed  CAS  Google Scholar 

  • Bole, D.G., R. Down, M. Doriaux and J.J. Jamieson, 1990, Immunocytochemical localization of BiP to the rough endoplasmic reticulum: evidence for protein sorting by selective retention. J. Histochem. Cytochem., 37: 1817.

    Article  Google Scholar 

  • Cala, S.E. and L.R. Jones, 1983, Rapid purification of calsequestrin from cardiac and skeletal muscle sarcoplasmic reticulum vesicles by Ca2+ -dependent elution from phenyl-Sepharose. J. Biol. Chem., 258: 11932.

    PubMed  CAS  Google Scholar 

  • Cala, S.E. and L.R. Jones, 1991, Phosphorylation of cardiac and skeletal muscle calsequestrin isoforms by casein kinase II. J. Biol. Chem., 266: 391.

    PubMed  CAS  Google Scholar 

  • Cala, S.E., B.T. Scott and L.R. Jones, 1990, Intraluminal sarcoplasmic reticulum Ca2+-binding proteins. Sem. Cell Biol., 1: 265.

    CAS  Google Scholar 

  • Chiesi, M. and E. Carafoli, 1982, The regulation of Ca2+ transport by rat skeletal muscle sarcoplasmic reticulum. Role of calmodulin and the 53,000 dalton glycoprotein. J. Biol. Chem., 257: 984

    PubMed  CAS  Google Scholar 

  • Costello B., C. Chadwick, A. Saito, A. Chu, A. Maurer and S. Fleischer, 1986, Characterization of the junctional face membrane of terminal cisternae of sarcoplasmic reticulum. J. Cell Biol., 103: 741.

    Article  PubMed  CAS  Google Scholar 

  • Damiani, E., and A. Margreth, 1990, Specific protein-protein interactions of calsequestrin with junctional sarcoplasmic reticulum of skeletal muscle. Biochem. Biophys. Res. Commun., 172: 1253.

    Article  PubMed  CAS  Google Scholar 

  • Damiani, E. and A. Margreth, 1991, Subcellular fractionation to junctional sarcoplasmic reticulum and biochemical characterization of the 170 kDa Ca2+- and LDL-binding protein in rabbit skeletal muscle. Biochem. J., in press.

    Google Scholar 

  • Damiani, E., P. Volpe and A. Margreth, 1990, Coexpression of two isoforms of calsequestrin in rabbit slow-twitch muscle. J. Muscle Res. Cell Motil., 11: 522.

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw, W.C., 1987, Anionic regions in nuclear proteins. J. Cell Biol., 105:1479.

    Article  PubMed  CAS  Google Scholar 

  • Ezerman, E.B. and H. Ishikawa, 1967, Differentiation of the sarcoplasmic reticulum and T-system in developing chick skeletal muscle in vitro. J. Cell Biol., 35: 405.

    Article  PubMed  CAS  Google Scholar 

  • Fambrough, D.M. and P.N. Devreotes, 1978, Newly synthesized acetylcholine receptors are located in the Golgi apparatus. J. Cell Biol., 76: 237.

    Article  PubMed  CAS  Google Scholar 

  • Fleischer, S. and M. Inui, 1989, Biochemistry and biophysics of excitation-contraction coupling. Annu. Rev. Piophys, Biophys, Chem., 18: 333.

    Article  CAS  Google Scholar 

  • Fliegel, L., K. Burns, M. Opas and M. Michalak, 1989a, The high-affinity calcium binding protein of sarcoplasmic reticulum. Tissue distribution and homology with calregulin. Biochim. Biophys. Acta. 982: 1.

    Article  CAS  Google Scholar 

  • Fliegel, L., E. Leberer, N.M. Green and D.H. MacLennan, 1989b, The fast-twitch muscle calsequestrin isoform predominates in rabbit slow-twitch soleus muscle. FEB3 Lett., 242: 297.

    Article  CAS  Google Scholar 

  • Fliegel, L., K. Burns, D.H. MacLennan, R.A.F. Reithmeier and M. Michalak, 1989c, Molecular cloning of the high affinity calcium binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem., 264: 21522.

    CAS  Google Scholar 

  • Fliegel, L., E. Newton, K. Burns and M. Michalak, 1990, Molecular cloning of cDNA encoding a 55-KDa multifunctional thyroid hormone binding protein of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem., 265: 15496.

    PubMed  CAS  Google Scholar 

  • Fliegel, L., M. Ohnishi, M.R. Carpenter, V.H. Khanna, A.F. Reinhart, R.A.F Reithmeier and D.H. MacLennan, 1987, Amino acid sequence of rabbit fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing. Proc. Natl. Acad. Sci. (USA), 84: 1167.

    Article  CAS  Google Scholar 

  • Franzini-Armstrong, C., L.J. Kenney and E. Varriano-Marston, 1987, The structure of calsequestrin in triads of vertebrate skeletal muscle: a deep-etch study. J. Cell Biol., 105: 49.

    Article  PubMed  CAS  Google Scholar 

  • Gething, M.-J. and J. Sambrook, 1990, Transport and assembly processes in the endoplasmic reticulum. Sem. Cell Biol., 1: 65.

    CAS  Google Scholar 

  • Hofmann, S.L., M.S. Brown, E. Lee, R.K. Pathak, R.G.W. Anderson and J.L. Goldstein, 1989a, Purification of a sarcoplasmic reticulum protein that binds calcium and plasma lipoproteins. J. Biol. Chem., 264: 8260.

    CAS  Google Scholar 

  • Hofmann, S.L., J.L. Goldstein, K. Orth, C.R. Moorman, C.A. Slaughter and M.S. Brown, 1989b, Molecular cloning of histidine-rich calcium binding protein of sarcoplasmic reticulum that contains highly conserved repeated elements. J. Biol. Chem., 264: 18083.

    CAS  Google Scholar 

  • Ikemoto, N., M. Ronjat, L.G. Meszaros and M. Koshita, 1989, Postulated role of calsequestrin in the regulation of calcium release from sarcoplasmic reticulum. Biochemistry, 28: 6764.

    Article  PubMed  CAS  Google Scholar 

  • Koch, G.L.E., 1987, Reticuloplasmins: a novel group of proteins in the endoplasmic reticulum. J. Cell Sci., 87: 491.

    PubMed  CAS  Google Scholar 

  • Leberer, E., J.M.H Charuk, N.M. Green and D.H. MacLennan, 1989a, Molecular cloning and expression of cDNA encoding a lumenal calcium binding glycoprotein from sarcoplasmic reticulum. Proc. Natl. Acad. Sci., (USA). 86: 6047.

    Article  CAS  Google Scholar 

  • Leberer, E., J.M.H. Charuk, D.M. Clarke, N.M. Green, E. Zubrzycka-Gaarn and D.H. MacLennan, 1989b, Molecular cloning and expression of cDNA encoding the 53,000-dalton glycoprotein of rabbit skeletal muscle sarcoplasmic reticulum. J. Biol. Chem., 264: 3484.

    CAS  Google Scholar 

  • Leberer, E., B.G. Timms, K.P. Campbell and D.H. MacLennan, 1990, Purification, calcium binding properties, and ultrastructural localization of the 53,000 and 160,000 (sarcalumenin) dalton glycoproteins of sarcoplasmic reticulum. J. Biol. Chem., 265: 10118.

    PubMed  CAS  Google Scholar 

  • Leonards, K.S. and H. Kutchai, 1985, Coupling of Ca2+ transport to ATP hydrolysis by the Ca2+-ATPase of sarcoplasmic reticulum. Potential role of the 53-Kilodalton glycoprotein. Biochemistry. 24: 4876.

    Article  PubMed  CAS  Google Scholar 

  • Macer, D.R.J, and G.L.E. Koch, 1988, Identification of a set of calcium-binding proteins in reticuloplasm, the luminal content of the endoplasmic reticulum. J. Cell Sci., 91: 61.

    PubMed  CAS  Google Scholar 

  • MacLennan, D.H. and P.T.S. Wong, 1971, Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc. Natl. Acad. Sci. (USA). 68: 1231.

    Article  CAS  Google Scholar 

  • MacLennan, D.H., C.J. Brandl, B. Korczak and N.M. Green, 1985, Amino acid sequence of a Ca2++Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature (London). 316: 699.

    Article  Google Scholar 

  • MacLennan, D.H., K.P. Campbell and R.A.F Reithmeier, 1983, in: “Calcium and Cell Function:, Chung, W.Y. ed., Academic Press, New York, pp. 151–173.

    Google Scholar 

  • Maylie, J., M. Irving, N. Leung Sizto, G. Boyarsky and W.K Chandler, 1987, Calcium signals recorded from cut frog twitch fibers containing tetramethylmurexide. J. Gen. Physiol., 89: 145.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, R.D., H.K.B. Simmerman and L.R. Jones, 1988, Calcium binding effects on protein conformation and protein interactions of canine cardiac calsequestrin. J. Biol. Chem., 263: 1376.

    PubMed  CAS  Google Scholar 

  • Munro, S. and H.R.B. Pelham, 1987, A C-terminal signal prevents secretion of luminal ER proteins. Cell, 48: 899.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, T.E. and K. Nelson, 1990, Intra- and extraluminal sarcoplasmic reticulum membrane regulatory sites for Ca2+-induced Ca2+ release. FEBS Lett., 263: 292.

    Article  PubMed  CAS  Google Scholar 

  • Ostwald, T.J. and D.H MacLennan, 1974, Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J. Biol. Chem., 249: 974.

    PubMed  CAS  Google Scholar 

  • Porter, K.R. and G.E. Palade, 1957, Studies on the sarcoplasmic reticulum. III. Its form and distribution in striated muscle cells. J. Biophys. Biochem. Cytol., 3: 269.

    Article  PubMed  CAS  Google Scholar 

  • Saito, A., S. Seiler, A. Chu and S. Fleischer, 1984, Preparation and morphology of terminal cisternae from rabbit skeletal muscle. J. Cell Biol., 99: 875.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J.F., 1990, The involvement of calcium in transport of secretory proteins from the endoplasmic reticulum. Cell, 61: 197.

    Article  PubMed  CAS  Google Scholar 

  • Schiaffino, S. and A. Margreth, 1969, Coordinated development of the sarcoplasmic reticulum and T system during postnatal differentiation of rat skeletal muscle. J. Cell Biol., 41: 855.

    Article  PubMed  CAS  Google Scholar 

  • Scott, B.T., H.K.B. Simmerman, J.H. Collins, B. Nadal-Ginard and LR. Jones, 1988, Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. J. Biol. Chem., 263: 8958.

    PubMed  CAS  Google Scholar 

  • Smith, M.J. and Koch, G.L.E., 1989, Multiple zones in the sequence of calreticulin (CRP 55, calregulin, HACBP) a major calcium binding ER/SR protein. EMBO J., 8: 3581.

    PubMed  CAS  Google Scholar 

  • Takeshima, H., S. Nishimura, T. Matsumoto, H. Ishida, K. Kangawa, N. Minamino, H. Matsuo, M. Ueda, M. Hanaoka, T. Hirose and S. Numa, 1989, Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature (London). 339: 439.

    Article  CAS  Google Scholar 

  • Thomas, K., J. Navarro, R.J.J. Benson, K.P. Campbell, R.L. Rotundo and R.E. Fine, 1989, Newly synthesized calsequestrin, destined for the sarcoplasmic reticulum, is contained in early/intermediate Golgi-derived clathrin-coated vesicles. J. Biol. Chem., 264: 3140.

    PubMed  CAS  Google Scholar 

  • Tooze, J., M. Hollinshead, S.D. Fuller, S.A. Tooze and W.B. Huttner, 1989, Morphological and biochemical properties in AtT-20 cells and their growth cones. Eur. J. Cell Biol., 49: 259.

    PubMed  CAS  Google Scholar 

  • Valdivia, C., H. Valdivia, J. Vilven and R. Coronado, 1989, Proton gating of calcium release channels in vesicles derived from junctional sarcoplasmic reticulum. Biophys. J., 55: 88a.

    Google Scholar 

  • Villa, A., P. Podini, D.O. Clegg, T. Pozzan and J. Meldolesi, 1991, Intracellular Ca2+ stores in chicken Purkinje neurons: differential distribution of the low affinity-high capacity calcium binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein, BiP. J. Cell Biol., 113: 779.

    Article  PubMed  CAS  Google Scholar 

  • Volpe, P., 1989, The unraveling architecture of the junctional sarcoplasmic reticulum. J. Bioenerg. Biomem., 21: 215.

    Article  CAS  Google Scholar 

  • Volpe, P. and B.J. Simon, 1991, The bulk of calcium released to the myoplasm is free in the sarcoplasmic reticulum and does not unbind from calsequestrin. FEBS Lett., 278: 274.

    Article  PubMed  CAS  Google Scholar 

  • Volpe, P., H.E. Gutweniger and C. Montecucco, 1987, Photolabeling of integral proteins of skeletal muscle sarcoplasmic reticulum. Comparison of junctional and non-junctional membrane fractions. Arch. Biochem. Biophys., 253: 138.

    Article  PubMed  CAS  Google Scholar 

  • Volpe, P., B.H. Alderson-Lang, L. Madeddu, E. Damiani, J.H. Collins and A. Margreth, 1990, Calsequestrin a component of the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of chicken cerebellum. Neuron, 5: 713.

    Article  PubMed  CAS  Google Scholar 

  • Waisman, D.M., B.P. Salimath and M.J. Anderson, 1985, Isolation and characterization of CAB-63, a novel calcium-binding protein. J. Biol. Chem., 260: 1652.

    PubMed  CAS  Google Scholar 

  • Yuan, S., W. Arnold and A.O. Jorgensen, 1991, Biogenesis of transverse tubules and triads: immunolocalization of the 1,4-dihydropyridine receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ. J. Cell Biol., 112: 289.

    Article  PubMed  CAS  Google Scholar 

  • Zorzato, F. and P. Volpe, 1988, Calcium binding proteins of junctional sarcoplasmic reticulum. Detection by Ca2+ ligand overlay. Arch. Biochem Biophys., 261: 324.

    Article  PubMed  CAS  Google Scholar 

  • Zorzato, F., J. Fujii, K. Otsu, M. Phillips, N.M. Green, F.A. Lai, G. Meissner and D.H. MacLennan, 1990, Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem., 265: 2244.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Volpe, P., Martini, A., Nori, A. (1992). The Sarcoplasmic Reticulum of Skeletal Muscle: A Look from Inside. In: Frank, G.B., Bianchi, C.P., ter Keurs, H.E.D.J. (eds) Excitation-Contraction Coupling in Skeletal, Cardiac, and Smooth Muscle. Advances in Experimental Medicine and Biology, vol 311. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3362-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3362-7_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6483-2

  • Online ISBN: 978-1-4615-3362-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics