Skip to main content

Abstract

The first 20 years in the half century of antibiotic search and discovery yielded many successful antibiotics. The chances of discovering new useful antibiotics, however, declined, sharply thereafter, precipitating strategic changes. Mechanism-based or target-directed screening, utilization of rare microorganisms and unusual culture conditions, and introduction of gene technology to modify antibiotic productivity have been among the major changes; these topics will be reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aoki, H., H. Sakai, M. Kohsaka, T. Konomi, J. Hosoda, Y. Kubouchi, E. Iguchi, and H. Imanaka. 1976. Nocardicin A, a new monocyclic β-lactam antibiotic. I. Discovery, isolation and characterization. J. Antibiotics 29: 492–500.

    CAS  Google Scholar 

  2. Aoki, H., K. Kunugita, J. Hosoda, and H. Imanaka. 1977. Screening of new and novel β-lactam antibiotics. Japanese J. Antibiotics (Suppl.) 30: 207–217.

    CAS  Google Scholar 

  3. Arai, M. 1960. Azalomycins B and F, two new antibiotics. II. Properties of azalomycins B and F. J. Antibiotics 13A: 51–56.

    Google Scholar 

  4. Arai, T., K. Yazawa, Y. Mikami, A. Kubo, and K. Takahashi, 1976. Isolation and characterization of satellite antibiotics, mimosamycin and chlorocarcins from Streptomyces lavendulae , streptothricin source. J. Antibiotics 29: 398–407.

    CAS  Google Scholar 

  5. Arai, T., K. Takahashi, and A. Kubo, 1977. New antibiotics, saframycins A, B, C, D and E. J. Antibiotics 30: 1015–1018.

    CAS  Google Scholar 

  6. Arima, K., H. Imanaka, M. Kousaka, A. Fukuda, and G. Tamura. 1965. Studies on pyrrolnitrin, a new antibiotic. I. Isolation and properties of pyrrolnitrin. J. Antibiotics 18A: 201–204.

    Google Scholar 

  7. Beppu, T. 1982. Screening of antifungal agents using morphological abnormality as an index, p. 129–137. In K. Arima, H. Umezawa, S. Fukui, and D. Mizuno (ed.), Medicine and microbial production, Part I. Gakkai Shuppan Center, Tokyo.

    Google Scholar 

  8. Brillinger, G.U. 1979. Chitin synthase from fungi: A test model for substances with insecticidal properties. Arch. Microbiol. 121: 71–74.

    PubMed  CAS  Google Scholar 

  9. Brown, A.G., D. Butterworth, M. Cole, G. Hanscomb, J.D. Hood, C. Reading, and G.N. Rolinson. 1976. Naturally-occurring β-lactamase inhibitors with antibacterial activity. J. Antibiotics 29: 668–669.

    CAS  Google Scholar 

  10. Chain, E., H.W. Florey, A.D. Gardner, N.G. Heatley, M.A. Jennings, J. On-Ewing, and A.G. Sanders. 1940. Penicillin as a chemotherapeutic agent. Lancet II: 226–228.

    CAS  Google Scholar 

  11. Conover, L.H. 1971. Drug discovery from microbiological sources, p. 33–80. In R.F. Gould (ed.), Drug Discovery (Advances in Chemistry, series 108). American Chemical Society, Washington, D.C.

    Google Scholar 

  12. Dähn, U., H. Hagenmaier, H. Höhne, W.A. König, G. Wolf, and H. Zähner. 1976. Metabolic products of microorganisms. 154. Nikkomycin, a new inhibitor of fungal chitin synthesis. Arch. Microbiol. 107: 143–160.

    PubMed  Google Scholar 

  13. de Kruyff, B., and R.A. Demel. 1974. Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. III. Molecular structure of polyene antibiotic-cholesterol complexes. Biochem. Biophys. Acta. 339: 57–70.

    Google Scholar 

  14. Duggar, B.M. 1948. Aureomycin: a product of the continuing search for new antibiotics. Ann. N.Y. Acad. Sci. 51: 177–181.

    PubMed  CAS  Google Scholar 

  15. Ehrlich, J., G.R. Bartz, R.M. Smith, and D.A. Joslyn. 1947. Chloromycetin, a new antibiotic from a soil actinomycete. Science 106: 417.

    PubMed  CAS  Google Scholar 

  16. Epp, J.K., M.L.B. Huber, J.R. Turner, T. Goodson, and B.E. Schoner. 1989. Production of a hybrid macrolide antibiotic in Streptomyces ambofaciens and Streptomyces lividans by introduction of a cloned carbomycin biosynthetic gene from Streptomyces thermotolerans. Gene 85: 293–301.

    PubMed  CAS  Google Scholar 

  17. Etienne, G., E. Armau, and G. Tiraby. 1990. A screening method for antifungal substances using Saccharomyces cerevisiae strains resistant to polyene macrolides. J. Antibiotics 48: 199–206.

    Google Scholar 

  18. Finlay, A.C., G.L. Hobby, S.Y. Pan, P.P. Regna, J.B. Routien, D.B. Seeley, G.M. Shull, B.A. Sobin, I.A. Solomons, J.W. Vinson, and J.H. Kane. 1950. Terramycin, a new antibiotic. Science 111: 85.

    PubMed  CAS  Google Scholar 

  19. Fleming, A. 1929. On the antibacterial action of culture of a Penicillium ,with special reference to their use in the isolation of B. influenzae. Brit. J. Exp. Pathol. 10: 226–236.

    CAS  Google Scholar 

  20. Frere, J.M., D. Klein, and J.M. Ghuysen, 1980. Enzymatic method for rapid and sensitive determination of β-lactam antibiotics. Antimicrob. Agents and Chemother. 18: 506–510.

    CAS  Google Scholar 

  21. Gellert, M., M.H. O’Dea, T. Itoh, and J.I. Tomizawa. 1976. Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase. Proc. Natl. Acad. Sci. U.S.A. 73: 4474–4478.

    PubMed  CAS  Google Scholar 

  22. Gold, W., H.A. Stout, J.F. Pagano, and R. Donovick. 1956. Amphotericin A and B, antifungal antibiotics produced by a Streptomycetes. 1. In vitro studies, p. 579586. In H. Welch and F. Marti-Ivanez (ed.), Antibiotics Annual. Medical Encyclopedia, Inc., New York.

    Google Scholar 

  23. Gomi, S., D. Ikeda, H. Nakamura, H. Naganawa, F. Yamashita, K. Hotta, S. Kondo, Y. Okami, H. Umezawa, and Y. litaka. 1984. Isolation and structure of a new antibiotic, indolizomycin, produced by a strain SK2–52 obtained by interspecies fusion treatment. J. Antibiotics 37: 1491–1494.

    CAS  Google Scholar 

  24. Gunji, S., K. Arima, and T. Beppu. 1983. Screening of antifungal antibiotics according to activities inducing morphological abnormalities. Agr. Biol. Chem. 47: 2061–2069.

    CAS  Google Scholar 

  25. Hamamoto, T., S. Gunji, H. Tsuji, and T. Beppu. 1983. Leptomycins A and B, new antifungal antibiotics. I. Taxonomy of the producing strains and their fermentation, purification and characterization. J. Antibiotics 36: 639–645.

    CAS  Google Scholar 

  26. Hutted, R.L., P.H. Hidy, and E.K. LaBaw. 1955. Cycloserine. I. A preliminary report. Antibiotics & Chemotherapy 5: 204.

    Google Scholar 

  27. Hata, T., Y. Sano, N. Ohki, Y. Yokoyama, A. Matsumae, and S. Ito. 1953. Leucomycin, a new antibiotic. J. Antibiotics 6A: 87–89.

    Google Scholar 

  28. Hazen, E.L., and R. Brown. 1950. Two antifungal agents produced by a soil actinomycete. Science 112: 423.

    PubMed  CAS  Google Scholar 

  29. Hendlin, D., E.O. Stapley, M. Jackson, H. Wallick, A.K. Miller, F.J. Wolf, T.W. Miller, L. Chalet, F.M. Kahan, E.L. Folz, H.B. Woodruff, J.M. Mata, S. Hernandez, and S. Mochales. 1969. Phosphonomycin, a new antibiotic produced by a strain of Streptomyces. Science 166: 122–123.

    PubMed  CAS  Google Scholar 

  30. Hickey, R.J. 1953. The antagonism between the antifungal antibiotic, ascosin, and some long chain, unsaturated fatty acids. Arch. Biochem. Biophys. 46: 331–336.

    PubMed  CAS  Google Scholar 

  31. Hopwood, D.A., F. Malpartida, H.M. Kieser, H. Ikeda, J. Duncan, I. Fujii, B.A.M. Rudd, H.G. Floss, and S. Omura. 1985. Production of “hybrid” antibiotics by genetic engineering. Nature 314: 642–644.

    PubMed  CAS  Google Scholar 

  32. Hopwood, D.A. 1988. Towards an understanding of gene switching in Streptomyces , the basis of sporulation and antibiotic production. Proc. R. Soc. Lond. B235: 121–138.

    Google Scholar 

  33. Hooper, D.C., J.S. Wolfson, G.L. Michugh, M.B. Winters, and M.N. Swartz. 1982. Effect of novobiocin, coumermycin Al, chlorobiocin, and their analogs on Escherichia coli DNA gyrase and bacterial growth. Antimicrob. Agents Chemother. 22: 662–671.

    CAS  Google Scholar 

  34. Hotta, K., A. Takahashi, Y. Okami, and H. Umezawa. 1983. Relationship between antibiotic resistance and antibiotic productivity in actinomycetes which produce aminoglycoside antibiotics. J. Antibiotics 36: 1789–1791.

    CAS  Google Scholar 

  35. Hotta, K., F. Yamashita, Y. Okami, and H. Umezawa. 1985. New antibiotic-producing streptomycetes, selected by antibiotic resistance as a marker. II. Features of a new antibiotic-producing clone obtained after fusion treatment. J. Antibiotics 38: 64–69.

    CAS  Google Scholar 

  36. Iannitelli, R.C., and M. Ikawa. 1980. Effect of fatty acids on action of polyene antibiotics. Antimicrob. Agents Chemother. 17: 861–864.

    PubMed  CAS  Google Scholar 

  37. Imada, A., K. Kitano, K. Kintaka, M. Muroi, and M. Asai. 1981. Sulfazecin and isosulfazecin, novel β-lactam antibiotics of bacterial origin. Nature 289: 590–591.

    PubMed  CAS  Google Scholar 

  38. Imada, A., and H. Okazaki. 1987. Takeda’s efforts to discover β-lactam antibiotics from bacteria: Ten years of experience, p. 3–12. In R.E. Cape, M.I. Goldberg, T. Hata, and K. Maeda (ed.), Antibiotic Research and Biotechnology. Japan Antibiotics Research Association, Tokyo, Japan.

    Google Scholar 

  39. Ishibashi, K. 1962. Studies on antibiotics from Helminthosporium sp. fungi. VII. J. Antibiotics 15: 161–167.

    CAS  Google Scholar 

  40. Ishikawa, J., Y. Koyama, S. Mizuno, and K. Hotta. 1988. Mechanisms of increased kanamycin-resistance generated by protoplast regeneration of Streptomyces griseus. II. Mutational gene alteration and gene amplification. J. Antibiotics 41: 104–112.

    CAS  Google Scholar 

  41. Isono, K. 1985. Inhibitors of fungal cell walls, p. 195–216. In Antibiotics: development into new fields (ed., The Japanese Agricultural Scientific Society). Asakura Shoten, Tokyo.

    Google Scholar 

  42. Kahan, J.S., F.M. Kahan, R. Goegelman, S.A. Currie, M. Jackson, E.O. Stapley, T.W. Miller, A.K. Miller, D. Hendlin, S. Mochales, S. Hernandez, H.B. Woodruff, and J. Birnbaum. 1979. Thienamycin, a new β-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. J. Antibiotics 32: 1–12.

    CAS  Google Scholar 

  43. Kamogashira, T. 1988. Some characteristics of a hypersensitive mutant to β-lactam antibiotics derived from a strain of Staphylococcus aureus. Agric. Biol. Chem. 52: 1841–1843.

    CAS  Google Scholar 

  44. Kamogashira, T., M. Sugawara, and M. Takano. 1988. Isolation of a fosfomycinhypersensitive mutant and production of a n-glucose-l-phosphate from Bacillus sp. BA-3796 screened by its use. J. Ferment. Technol. 66: 649–655.

    CAS  Google Scholar 

  45. Kamogashira, T., and S. Takegata. 1988. A screening method for cell wall inhibitors using a u-cycloserine hypersensitive mutant. J. Antibiotics 41: 803–806.

    CAS  Google Scholar 

  46. Khokhlov, A.S. 1988. Results and perspectives of actinomycete autoregulators studies, p. 338–345. In Y. Okami, T. Beppu, and H. Ogawara (ed.), Biology of Actinomycetes ‘88. Japan Scientific Societies Press, Tokyo, Japan.

    Google Scholar 

  47. Kitano, K., K. Kintaka, S. Suzuki, K. Kitamoto, K. Nara, and Y. Nakao. 1975. Screening of microorganisms capable of producing β-lactam antibiotics. J. Ferment. Technol. 53: 327–338.

    CAS  Google Scholar 

  48. Kitano, K., K. Nara, and Y. Nakao. 1977. Screening for β-lactam antibiotics using a mutant of Pseudomonas aeruginosa. Japanese Antibiotics (Suppl.) 30: 239–245.

    CAS  Google Scholar 

  49. Kobinata, K., M. Uramoto, N. Nishii, H. Kusakabe, G. Nakamura, and K. Isono. 1980. Neopolyoxins A, B and C, new chitin synthetase inhibitors. Agr. Biol. Chem. 44: 1709–1711.

    CAS  Google Scholar 

  50. Kuroda, Y., M. Okuhara, T. Goto, E. Iguchi, M. Kohsaka, H. Aoki, and H. Imanaka. 1980. FR-900130, a novel amino acid antibiotic. I. Discovery, taxonomy, isolation and properties, J. Antibiotics 33: 125–131.

    CAS  Google Scholar 

  51. Lechevalier, H.A., and M.P. Lechevalier. 1967. Biology of actinomycetes. Ann. Rev. Microbiol. 21: 71–100.

    CAS  Google Scholar 

  52. Mahoney, D.F., D.K. Baisden, and R.C. Yao. 1989. A peptide binding chromogenic assay for detecting glycopeptide antibiotics. J. Ind. Microbiol. 4: 43–47.

    CAS  Google Scholar 

  53. Mason, D.J., A. Dietz, and C. DeBoer. 1963. Lincomycin, a new antibiotic. I. Discovery and biological properties, p. 554–559. In J.C. Sylvester (ed.), Antimicrobial Agents and Chemotherapy 1962. American Society for Microbiology, Ann Arbor, Michigan.

    Google Scholar 

  54. Masson, J.M., V. Guillermet, and F. LeGoffic. 1987. Chitin synthase as a target for the design of antifungal agents. Eur. J. Med. Chem. 22: 377–381.

    CAS  Google Scholar 

  55. Masui, I., S. Murakawa, and T. Takahashi. 1980. Attempt of microbial mutagen screening with Rec-assay: isolation of chartreusin. Agric. Biol. Chem. 44: 919–920.

    Google Scholar 

  56. Matsuda, Y., M. Kitahara, K. Maeda, and H. Umezawa. 1982. A method of screening for antibiotics producing oxygen radicals. J. Antibiotics 35: 928–930.

    CAS  Google Scholar 

  57. Matsuda, Y., M. Kitahara, K. Maeda, and H. Umezawa. 1982. Some evidence for interaction of D-cycloserine with DNA. J. Antibiotics 35: 893–899.

    CAS  Google Scholar 

  58. McGuire, J.H., R.L. Bunch, R.C. Anderson, H.E. Boaz, E.H. Flynn, H.M. Powell, and J.W. Smith. 1952. Itomycin (erythromycin-Lilly). Antibiotics & Chemotherapy 2: 281–283.

    CAS  Google Scholar 

  59. Nagaoka, K., and A.L. Demain. 1975. Mutational biosynthesis of a new antibiotic, streptomutin A, by an idiotroph of Streptomyces griseus . J. Antibiotics 28: 627–635.

    CAS  Google Scholar 

  60. Nagarajan, R., L.D. Boeck, M. Gorman, R.L. Hamill, C.E. Higgens, M.M. Hoehn, W.M. Stark, and J.G. Whitney. 1971. β-lactam antibiotics from Streptomyces . J. Amer. Chem. Soc. 93: 2308–2310.

    CAS  Google Scholar 

  61. . Nakamura, Y., K. Ishii, E. Ono, M. Ishihara, T. Kohda, Y. Yokogawa, and H. Shibai. 1988. A novel naturally occurring carbapenem antibiotic, AB-110-D, produced by Kitasatosporia papulosa novo sp. J. Antibiotics 41: 707 -711.

    CAS  Google Scholar 

  62. Nakamura, Y., E. Ono, T. Kohda, and H. Shibai. 1989. Highly targeted screening system for carbapenem antibiotics. J. Antibiotics 42: 73–83.

    CAS  Google Scholar 

  63. Naveh, A., I. Potasman, H. Bassan, and S. Ulitzur. 1984. A new rapid and sensitive bioluminescence assay for antibiotics that inhibit protein synthesis. J. Appl. Bacteriol. 56: 457–463.

    PubMed  CAS  Google Scholar 

  64. Newton, G.G.F., and E.P. Abraham. 1955. Cephalosporin C, a new antibiotic containing sulphur and D-aminoadipic acid. Nature 175: 548.

    PubMed  CAS  Google Scholar 

  65. Nisbet, L.J., and N. Porter. 1989. The impact of pharmacology and molecular biology on the exploitation of microbial products, p. 309–342. In S. Baumberg, I. Hunter, and M.J. Rhodes (ed.), Microbial Products: New Approaches. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  66. Nolan, R.D., and T. Cross. 1988. Isolation and screening of actinomycetes, p. 132. In M. Goodfellow, S.T. Williams, and M. Mordarski (ed.), Biotechnology in Actinomycetes. Academic Press, London, England.

    Google Scholar 

  67. Nozaki, Y., N. Katayama, H. Ono, S. Tsubotani, S. Harada, H. Okazaki, and Y. Nakao. 1987. Binding of a non-β-lactam antibiotic to penicillin-binding proteins. Nature 325: 179–180.

    PubMed  CAS  Google Scholar 

  68. Numata, K., H. Yamamoto, M. Hatori, T. Miyaki, and H. Kawaguchi. 1986. Isolation of an aminoglycoside hypersensitive mutant and its application in screening. J. Antibiotics 39: 994–1000.

    CAS  Google Scholar 

  69. Okami, T., T. Okazaki, T. Kitahara, and H. Umezawa. 1976. Studies on marine microorganisms. V. A new antibiotic, aplasmomycin, produced by a streptomycete isolated from shallow sea mud. J. Antibiotics 29: 1019–1025.

    CAS  Google Scholar 

  70. Okami, Y., and K. Hotta. 1988. Search and discovery of new antibiotics, p. 3367. In M. Goodfellow, S.T. Williams, and M. Mordarski (ed.), Biotechnology in Actinomycetes. Academic Press, London, England.

    Google Scholar 

  71. Okamura, H., A. Koki, M. Sakamoto, K. Kubo, Y. Mutoh, Y. Fukagawa, K. Kouno, Y. Shimauchi, T. Ishikura, and J. Lein. 1979. Microorganisms producing new βlactam antibiotics. J. Ferment. Technol. 57: 265–272.

    CAS  Google Scholar 

  72. Okumura, M., Y. Kuroda, T. Goto, M. Okamoto, H. Tarano, M. Kohsaka, H. Aoki, and H. Imanaka. 1980. Studies of new phosphonic acid antibiotics. I. FR-900098, isolation and characterization. J. Antibiotics 33: 13–17.

    Google Scholar 

  73. Omura, S., H. Tanaka, R. Oiwa, T. Nagai, Y. Koyama, and Y. Takahashi. 1979. Studies on bacterial cell wall inhibitors. VI. Screening method for the specific inhibitors of peptidoglycan synthesis. J. Antibiotics 32: 978–984.

    CAS  Google Scholar 

  74. Omura, S., M. Murata, K. Kimura, S. Matsukura, T. Nishihara, and H. Tanaka. 1985. Screening for new antifolates of microbial origin and a new antifolate, AM-8402. J. Antibiotics 38: 1016–1024.

    CAS  Google Scholar 

  75. Omura, S. 1986. Philosophy of new drug discovery. Microbiol. Rev. 50: 259–279.

    PubMed  CAS  Google Scholar 

  76. O’Sullivan, J., J.E. McCullough, A.A. Tymiak, D.R. Kirsch, W.H. Trejo, and P.A. Principe. 1988. Lysobactin, a novel antibacterial agent produced by Lysobacter sp. I. Taxonomy, isolation and partial characterization. J. Antibiotics 41: 1740–1744.

    Google Scholar 

  77. Oxford, A.E., H. Raistrick, and P. Simonart. 1939. XXIX. Studies in the biochemistry of microorganisms. LX. Griseofluvin, C„H„O6C1, a metabolic product of Penicillium griseofulvum Dierckx. Biochem. J. 33: 40–248.

    Google Scholar 

  78. Patel, M.V. 1985. An agar plate method for the screening of antibiotics triggering autolytic enzymes. J. Antibiotics 38: 527–529.

    CAS  Google Scholar 

  79. Rake, J.B., R. Gerber, R.J. Mehta, D.J. Newman, Y.K. Oh, C. Phelen, M.C. Shearer, R.D. Sitrin, and L.J. Nisbet. 1986. Glycopeptide antibiotics: A mechanism-based screen employing bacterial cell wall receptor mimetic. J. Antibiotics 39: 58–67.

    CAS  Google Scholar 

  80. Rinehart, K.L. Jr. 1977. Mutasynthesis of new antibiotics. Pure and Applied Chemistry 49: 1361–1384.

    CAS  Google Scholar 

  81. Ryder, N.S., and M.C. Dupont. 1985. Inhibition of squalene epoxidase by allylamine antimycotic compounds. A comparative study of the fungal and mammalian enzymes. Biochem. J. 230: 765–770.

    PubMed  CAS  Google Scholar 

  82. Schats, A., and S.A. Waksman. 1944. Effect of streptomycin and other antibiotic substances upon Mycobacterium tuberculosis and related organisms. Proc. Soc. Exp. Biol. Med. 57: 244–248.

    Google Scholar 

  83. Schindler, P.W., W. Konig, S. Chatterjee, and B.N. Ganguli. 1986. Improved screening for β-lactam antibiotics: A sensitive, high-throughput assay using DD carboxypeptidase and a novel chromophore-labeled substrate. J. Antibiotics 39: 53–57.

    CAS  Google Scholar 

  84. Selitrennikoff, C.P. 1983. Use of a temperature-sensitive, protoplast forming Neurospora crassa strain for the detection of antifungal antibiotics. Antimicrob. Agents Chemother. 23: 757–765.

    CAS  Google Scholar 

  85. Sensi, P., P. Margalith, and M.T. Timbal. 1959. Rifamycin, a new antibiotic. Preliminary report. Il Farmaco, Ed. Sci. 14: 146.

    CAS  Google Scholar 

  86. Shier, W.T., P. C Schaefer, D. Gottlieb, and K.L. Rinehart, Jr. 1974. Use of mutants in the study of aminocyclitol antibiotic biosynthesis and preparation of the hybrimycin C complex. Biochemistry 13: 5073–5078.

    PubMed  CAS  Google Scholar 

  87. Sobin, B.A., A.R. English, and W.O. Celmer. 1955. PA105, a new antibiotic, p. 827–830. In H. Welch and F. Marti-Ibannez (ed.), Antibiotics Ann.-1954/1955. Medical Encyclopedia, Inc., New York, NY.

    Google Scholar 

  88. Spirt-Nakagawa, P., Y. Fukushi, K. Maebashi, N. Imamura, Y. Takahashi, Y. Tanaka, H. Tanaka, and S. Omura. 1986. Izupeptins A and B, new glycopeptide antibiotics produced by an actinomycete. J. Antibiotics 39: 1719–1723.

    Google Scholar 

  89. Stapley, E.O., M. Jackson, S. Hernandez, S.B. Zimmerman, S.A. Currie, S. Mochales, J.M. Mata, H.B. Woodruff, and D. Hendlin. 1972. Cephamycins, a new family of β-lactam antibiotics. I. Production by actinomycetes, including Streptomyces lactamdurans sp. n. Antimicrob. Agents Chemother. 2: 122–131.

    CAS  Google Scholar 

  90. Steinberg, D.A., G.A. Patterson, R.J. White, and W.M. Maiese. 1985. The stimulation of bioluminescence in Photobacterium leignathi as a potential for antitumor agents. J. Antibiotics 38: 1401–1407.

    CAS  Google Scholar 

  91. Sykes, R.B., C.M. Cimarusti, D.P. Bonner, K. Bush, D.M. Floyd, N.H. Georgopapadakou, W.H. Koster, W.C. Liu, W.L. Parker, P.A. Principle, M.L. Rathnum, W.A. Slusarchyk, W.H. Trejo, and J.S. Wells. 1981. Monocyclic β-lactam antibiotics produced by bacteria. Nature 291: 489–491.

    PubMed  CAS  Google Scholar 

  92. Sykes, R.B., and J.S. Wells. 1985. Screening for β-lactam antibiotics in nature. J. Antibiotics 38: 119–121.

    CAS  Google Scholar 

  93. Takeuchi, S., H. Yonehara, and H. Umezawa. 1959. Studies on variotin, a new antifungal antibiotic. I. Preparations and properties of variotin. J. Antibiotics 12A: 195–200.

    Google Scholar 

  94. Takeuchi, T., T. Hara, H. Naganawa, H. Okada, M. Hamada, H. Umezawa, S. Gomi, M. Sezaki, and S. Kondo. 1988. New antifungal antibiotics, benanomicins A and B from an actinomycete. J. Antibiotics 41: 807–811.

    CAS  Google Scholar 

  95. Thomas, A.H. 1986. Suggested mechanisms for the antimycotic activity of the polyene antibiotics and the N-substituted imidazoles. J. Antimicrob. Chemother. 17: 269–279.

    PubMed  CAS  Google Scholar 

  96. Tsuda, K.T. Kihara, M. Nishii, G. Nakamura, K. Isono, and S. Suzuki. 1980. A new antibiotic, lipopeptin A. J. Antibiotics 33: 247–248.

    CAS  Google Scholar 

  97. Ubukata, M., M. Uramoto, J. Uzawa, and K. Isono. 1986. Structure and biological activity of neopeptins A, B and C, inhibitors of fungal cell wall glucan synthesis, Agr. Biol. Chem. 50: 351–356.

    Google Scholar 

  98. Umezawa, H., M. Ueda, K. Maeda, K. Yagishita, S. Kondo, Y. Okami, R. Utahara, Y. Osato, K. Nitta, and T. Takeuchi. 1957. Production and isolation of a new antibiotic, kanamycin. J. Antibiotics 10A: 181–188.

    Google Scholar 

  99. Vicario, P.P., B.G. Green, and H. Katzen. 1987. A single assay for simultaneously testing effectors of alanine racemase and/or D-alanine: D-alanine ligase. J. Antibiotics 40: 209–216.

    CAS  Google Scholar 

  100. Waksman, S.A., and H.A. Lechevaier. 1949. Neomycin, a new antibiotic active against streptomycin-resistant bacteria, including tuberculosis organisms. Science 109: 305–307.

    PubMed  CAS  Google Scholar 

  101. Weinstein, M.J., G.M. Luedemann, E.M. Oden, G.H. Wagman, J.P. Rosselet, J.A. Marquez, C.T. Coniglio, W. Charney, H.L. Herzog, and J. Black. 1963. Gentamicin, a new antibiotic complex from Micromonospora. J. Med. Chem. 6: 463–464.

    PubMed  CAS  Google Scholar 

  102. Williams, S.T., M. Goodfellow, and G. Alderson. 1989. Suprageneric classification of Actinomycetes , p. 2333–2339. In S.T. Williams (ed.), Bergey’s Manual of Systematic Bacteriology, Vol. 4. Williams and Wilkins, Baltimore, Maryland.

    Google Scholar 

  103. Yamashita, F., K. Hotta, S. Kurasawa, Y. Okami, and H. Umezawa. 1985. New antibiotic-producing streptomycetes, selected by antibiotic resistance as a marker. I. New antibiotic production generated by protoplast fusion treatment between Streptomyces griseus and S. renjimariensis. J. Antibiotics 38: 58–63.

    CAS  Google Scholar 

  104. Yao, R.C., and D.F. Mahoney. 1984. Enzyme-linked immunosorbent assay for the detection of fermentation metabolites: aminoglycoside antibiotics. J. Antibiotics 37: 1462–1468.

    CAS  Google Scholar 

  105. Yoshida, N., Y. Tani, and K. Ogata. 1972. Cryomycin, a new peptide antibiotic produced only at low temperature. J. Antibiotics 25: 653–659.

    CAS  Google Scholar 

  106. Zygmunt, W.A., and P.A. Tavormina. 1966. Steroid interference with antifungal activity of polyene antibiotics. Appl. Microbiol. 14: 865–869.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Imada, A., Hotta, K. (1992). Historical Perspectives of Approaches to Antibiotics Discovery. In: Sutcliffe, J.A., Georgopapadakou, N.H. (eds) Emerging Targets in Antibacterial and Antifungal Chemotherapy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3274-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3274-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6440-5

  • Online ISBN: 978-1-4615-3274-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics