Skip to main content

Thermal ionization mass spectrometry

  • Chapter
A Handbook of Silicate Rock Analysis
  • 843 Accesses

Abstract

Thermal ionization mass spectrometry is a technique which has been chiefly developed for the analysis of geological samples. The technique is used extensively for the isotope ratio measurements required for Rb—Sr, Nd—Sm and Pb—Th—U geochronology studies as well as the determination of rare-earth elements, and, less frequently, other selected elements by isotope dilution analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 17

  • Allegre, C.J. and F. Albarede (1974) 238U/206Pb-235U/207Pb232Th/208Pb zircon geochronology in alpine and non-alpine environments. Contrib. Mineral. Petrol 43 163–194.

    Article  Google Scholar 

  • Arden, J.W. (1983a) Electrochemical separation and isotopic determination of thallium at the nanogram level by surface ionisation mass spectrometry. Anal. Chim. Acta 148 211–223.

    Article  Google Scholar 

  • Arden, J.W. (1983b) Distribution of lead and thallium in the matrix of the Allende meteorite and the extent of terrestrial lead contamination in chondrites. Earth Planet. Sci. Lett 62 395–406.

    Article  Google Scholar 

  • Arden, J.W. and N.H. Gale (1974) New electrochemical technique for the separation of lead at trace levels from natural silicates. Anal. Chem 46 2–9.

    Article  Google Scholar 

  • Arth, J.G., F. Barker and T.W. Stern (1980) Geochronology of Archean gneisses in the Lake Helen area, south western Big Horn mountains, Wyoming. Precambrian Res. 11 11–22.

    Article  Google Scholar 

  • Birck, J.L. and C.J. Allegre (1973) 87Rb/87Sr systematics of Muntsche Tundra mafic pluton (Kola Peninsula, USSR). Earth Planet. Sci. Lett 20 266–274.

    Article  Google Scholar 

  • Boelrijk, N.A.I.M. (1968) A general formula for double isotope dilution analysis. Chem. Geol 3 323–325.

    Article  Google Scholar 

  • Cameron, A.E., D.H. Smith and R.L. Walker (1969) Mass spectrometry of nanogram-size samples of lead. Anal. Chem 41 525–526.

    Article  Google Scholar 

  • Catanzaro, E.J. (1967) Absolute isotopic abundance ratios of three common lead reference samples. Earth Planet. Sci. Lett 3 343–346.

    Article  Google Scholar 

  • Catanzaro, E.J., T.J. Murphy, W.R. Shields and E.L. Garner (1968) Absolute isotopic abundance ratios of common, equal-atom and radiogenic lead standards. J. Res. Natl. Bur. Stand A72 261–267.

    Google Scholar 

  • Colby, B.N., A.E. Rosecrance and M.E. Colby (1981) Measurement parameter selection of quantitative isotope dilution gas chromatography/mass spectrometry. Anal. Chem 53 1907–1911.

    Article  Google Scholar 

  • de Laeter, J.R., I.D. Abercrombie and R. Date (1969) Mass spectrometric isotope dilution analysis of barium in standard rocks. Earth Planet. Sci. Lett 7 64–66.

    Article  Google Scholar 

  • de Laeter, J.R. and D.J. Hosie (1977) Mass spectrometric isotope dilution analysis of barium in geochemical reference samples. Geostand. Newslett 1 143–145.

    Article  Google Scholar 

  • de Laeter, J.R. and N. Mermelengas (1978) Mass spectrometric isotope dilution determination of palladium in geochemical reference samples. Geostand. Newslett 2 9–11.

    Article  Google Scholar 

  • DePaolo, D.J. and G.J. Wasserburg (1976) Nd isotopic variations and petrogenetic models. Geophys. Res. Lett 3 249–252.

    Article  Google Scholar 

  • Faure, G. (1977) Principles of Isotope Geology John Wiley and Sons, New York.

    Google Scholar 

  • Gale, N.H., J.W. Arden and R. Hutchison (1975) The chronology of the Nakhla achondritic meteorite. Earth Planet. Sci. Lett 26 195–206.

    Article  Google Scholar 

  • Gancarz, A.J. and G.J. Wasserburg (1977) Initial Pb of the Amitsoq gneiss, West Greenland and implications for the age of the Earth. Geochim. Cosmochim. Acta 41 1283–1301.

    Article  Google Scholar 

  • Gast, P.W. (1962) The isotopic composition of strontium and the age of stone meteorites, J Geochim. Cosmochim. Acta 26 927.

    Article  Google Scholar 

  • Hawkesworth, C.J. and P.W.C. van Calsteren (1983). Radiogenic isotopes—some geological applications. In: P. Henderson (ed.), Rare Earth Element Geochemistry (Developments in Geochemistry, 2). Elsevier, Amsterdam, 375–421.

    Google Scholar 

  • Hawkesworth, C.J., M.J. Norry, J.C. Roddick, P.E. Baker, P.W. Francis and R.S. Thorpe (1979)143Nd/,144Nd, 87Sr/86Sr and incompatible element variations in calc-alkaline andesites and plateau lavas from South America. Earth Planet. Sci. Lett 42 45–57.

    Article  Google Scholar 

  • Heumann, K.G. (1982) Isotopic analysis of inorganic and organic substances by mass spectrometry. Int. J. Mass Spectrom. Ion Phys 45 87–110.

    Google Scholar 

  • Hooker, P.J., R.K. O’Nions and R.J. Pankhurst (1975) Determination of rare earth elements in USGS standard rocks by mixed solvent ion exchange and mass spectrometric isotope dilution. Chem. Geol 16 189–196.

    Article  Google Scholar 

  • Korkisch, J. and G. Arrhenius (1964) Separation of uranium, thorium and the rare earth elements by anion exchange. Anal. Chem 36 850–854.

    Article  Google Scholar 

  • Krogh, T.E. (1973) A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta 37 485–494.

    Article  Google Scholar 

  • Krogh, T.E. (1982a) Improved accuracy of U-Pb zircon dating by selection of more concordant fractions using a high gradient magnetic separation technique. Geochim. Cosmochim. Acta 46 631–635.

    Article  Google Scholar 

  • Krogh, T.E. (1982b) Improved accuracy of U-Pb zircon ages by creation of more concordant systems using an air abrasion technique. Geochim. Cosmochim. Acta 46 637–649.

    Article  Google Scholar 

  • Krogh, T.E. and G.L. Davis (1975) The production and preparation of 205Pb for use as a tracer for isotope dilution analysis. Carnegie Institute Yearbook 74 416–417.

    Google Scholar 

  • Lancelot, J.R., A.M. Bouillier, H. Maluski and J. Ducrot (1983) Deformation and related radiochronology in a Late Pan-African myonitic shear zone, Adrar des Iforas (Mali). Contrib. Mineral. Petrol 82 312–326.

    Article  Google Scholar 

  • Loss, R.D., K.J.R. Rosman and J.R. de Laeter (1983) Measurement of Ag, Te, Pd in geochemical reference materials by mass spectrometric isotope dilution analysis. Talanta 30 831–835.

    Article  Google Scholar 

  • Loss, R.D., K.J.R. Rosman and J.R. de Laeter (1983) Ag, Te, Pd in 17 geochemical reference materials by mass spectrometric isotope dilution analysis. Geostand. Newslett 7 321–324.

    Article  Google Scholar 

  • Loss, R.D., K.J.R. Rosman and J.R. de Laeter (1984) Mass spectrometric isotope dilution analysis of palladium, silver, cadmium and tellurium in carbonaceous chondrites. Geochim. Cosmochim. Acta 48 1677–1681.

    Article  Google Scholar 

  • Lugmair, G.W. and K. Marti (1978) Lunar initial 143Nd/144Nd differential evolution of the lunar crust and mantle. Earth Planet. Sci. Lett 39 349–357.

    Article  Google Scholar 

  • Manhes, G., C.J. Allegre and A. Provost (1984) U-Th-Pb systematics of the eucrite “Juvinas”: precise age determination and evidence for exotic lead. Geochim. Cosmochim. Acta 48 2247–2264.

    Article  Google Scholar 

  • Manhes, G., J.F. Minster and C.J. Allegre (1978) Comparative uranium-thorium-lead and rubidium-strontium study of the Saint Severin amphoterite: consequences of early solar system chronology. Earth Planet. Sci. Lett 39 14–24.

    Article  Google Scholar 

  • Masuda, A. (1968) Geochemistry of lanthanides in basalts of central Japan. Earth Planet. Sci. Lett 4 284–292.

    Article  Google Scholar 

  • Masuda, A., N. Nakamura and T. Tanaka (1973) Five structures of mutually normalised rare earth patterns of chondrites. Geochim. Cosmochim. Acta 37 239–248.

    Article  Google Scholar 

  • McCulloch, M.T. and B.W. Chappell (1982) Nd isotopic characteristics of S- and I-type granites. Earth Planet. Sci. Lett 58 5164.

    Article  Google Scholar 

  • Mermelengas, N., J.R. de Laeter and K.J.R. Rosman (1979) New data on the abundance of palladium in meteorites. Geochim. Cosmochim Acta 43 747–753.

    Article  Google Scholar 

  • Minster, J.F. and C.J. Allegre (1976) 87Rb-87Sr history of the Norton County enstatite achondrite. Earth Planet. Sci. Lett 32 191–198.

    Article  Google Scholar 

  • Nakamura, N. (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta 38 757–775.

    Article  Google Scholar 

  • Nakamura, N. and A. Masuda (1973) Chondrites with peculiar rare earth patterns. Earth Planet. Sci. Lett 19 429–437.

    Article  Google Scholar 

  • Nier, A.O. (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon and potassium. Phys. Rev 77 789–793.

    Article  Google Scholar 

  • Nunes, P.D. and P.C. Thurston (1980) Two hundred and twenty million years of Archean evolution: a zircon U-Pb age stratigraphic study of the Uchi-Confederation Lakes greenstone belt, northwestern Ontario. Can. J. Earth Sci 17 710–721.

    Article  Google Scholar 

  • O’Nions, R.K., P.J. Hamilton and N.M. Evensen (1977) Variations in 143Nd/144Nd and 87Sr/86Sr ratios in oceanic basalts. Earth Planet. Sci. Lett 34 13–22.

    Article  Google Scholar 

  • O’Nions, R.K., S.R. Carter, N.M. Evensen and P.J. Hamilton (1979) Geochemical and cosmochemical applications of Nd isotope analysis. Ann. Rev. Earth Planet. Sci 7 11–38.

    Article  Google Scholar 

  • Oversby, V.M. (1975) Lead isotopic systematics and ages of Archaean intrusives in Kalgoorlie-Norseman area, Western Australia. Geochim. Cosmochim. Acta 39 1107–1125.

    Article  Google Scholar 

  • Pankhurst, R.J. and R.K. O’Nions (1973) Determination of Rb/Sr and 87Sr/86Sr ratios of some standard rocks and evaluation of x-ray fluorescence spectrometry in Rb-Sr geochemistry. Chem. Geol 12 127–136.

    Article  Google Scholar 

  • Papanastassiou, D.A. and G.J. Wasserburg (1969) Initial strontium isotopic abundances and the resolution of small time differences in the formation of planetary objects. Earth Planet. Sci. Lett 5 361–376.

    Article  Google Scholar 

  • Richard, P., N. Shimizu and C.J. Allegre (1976) 143Nd/’46Nd, a natural tracer: an application to oceanic basalts. Earth Planet. Sci. Lett 31 269–278.

    Article  Google Scholar 

  • Sanz, H.G. and G.J. Wasserburg (1969) Determination of an internal 87Rb/87Sr isochron for the Olivenza chondrite. Earth Planet. Sci. Lett 6,335–345.

    Article  Google Scholar 

  • Schnetzler, C.C., H.H. Thomas and J.A. Philpotts (1967) Determination of rare earth elements in rocks and minerals by mass spectrometric stable isotope dilution technique. Anal. Chem 39 1888–1890.

    Article  Google Scholar 

  • Schnetzler, C.C., H.H. Thomas and J.A. Philpots (1967) The determination of barium in G-1 and W-1 by isotope dilution. Geochim. Cosmochim. Acta 31 95–96.

    Article  Google Scholar 

  • Schuhmann, S. and J.A. Philpotts (1979) Mass spectrometric stable isotope dilution analyses for lanthanides in geochemical materials. In: K.A. Gschneider and L. Eyring (eds.), Handbook on the Physical Chemistry of Rare Earths Elsevier/North Holland Publishing, Amsterdam, 4 471–481.

    Google Scholar 

  • Steiger, R.H. and E. Jager (1977) Subcommission of geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth Planet. Sci. Lett 36 359–362.

    Article  Google Scholar 

  • Tera, F. and G.J. Wasserburg (1972) U-Th-Pb systematics in lunar highland samples from the Lunar 20 and Apollo 16 missions. Earth Planet. Sci. Lett 17 36–51.

    Article  Google Scholar 

  • Tera, F. and G.J. Wasserburg (1975) Precise isotopic analysis of lead in picomole and subpicomole quantities. Anal. Chem 47 2214–2220.

    Article  Google Scholar 

  • Thirlwall, M.F. (1982) A triple filament method for rapid and precise analysis of rare earth elements by isotope dilution. Chem. Geol 35 155–166.

    Article  Google Scholar 

  • Tilton, G.R. (1973) Isotopic lead ages of chondritic meteorites. Earth Planet. Sei. Lett 19 321–329.

    Article  Google Scholar 

  • Verma, S.P. (1981) Mass spectrometric isotope dilution determination of K, Rb, Cs, Ba and Sr in five geochemical reference samples. Geostand. Newslett 5 129–131.

    Article  Google Scholar 

  • Wasserburg, G.J., S.B. Jacobsen, D.J. DePaolo, M.T. McCulloch and T. Wen (1981) Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochim. Cosmochim. Acta 45 2311–2323.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Potts, P.J. (1987). Thermal ionization mass spectrometry. In: A Handbook of Silicate Rock Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3270-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3270-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-216-93209-8

  • Online ISBN: 978-1-4615-3270-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics