Skip to main content

Abstract

Microprobe analysis techniques differ from most other techniques used to analyse geological materials in that they involve the excitation and chemical analysis of selected areas of diameter as small as a few microns on the surface of samples. Specimens must therefore be prepared as polished geological thin sections mounted on a glass slide backing, or alternatively as samples polished in a resin block. Microprobe techniques have, therefore, the ability to determine the composition of individual minerals in thin section or even concentration variations within a single grain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 10

  • Abbey, S. (1983) Studies in ‘standard samples’ of silicate rocks and minerals, 1969–1982. Geological Survey of Canada, Paper 8315.

    Google Scholar 

  • Albee, A.L. and A.A. Choodos (1970) Semiquantitative electron microprobe determination of Fe2+/Fe3+ and Mn2+/Mn3+ in oxides and silicates and its application to petrologic problems. Am. Mineral 55 491–501.

    Google Scholar 

  • Amli, R. and W.L. Griffin (1975) Microprobe analysis of REE minerals using empirical correction factors. Am. Mineral 60 599–606.

    Google Scholar 

  • Beaman, D.R. and J.A. Isasi (1970) A critical examination of computer programmes used in quantitative electron microprobe analysis. Anal. Chem 42 1540–1568.

    Article  Google Scholar 

  • Bence, A.E. and A.L. Albee (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. J. Geol 76 382–403.

    Article  Google Scholar 

  • Birks, L.S., R.E. Seebold, A.P. Batt and J.S. Grosso (1964) Excitation of characteristic x-rays by photons, electrons and primary x-rays. J. Appl. Phys 35 2578–2581.

    Article  Google Scholar 

  • Bloomer, R.N. (1957) The lives of electron microscope filaments. Brit. J. Appl. Phys 8 83–85.

    Article  Google Scholar 

  • Bowles, J.F.W. (1978) Quantitative microprobe analysis of uranium minerals. Microscope 26 55–67.

    Google Scholar 

  • Boyd, F.R., L.W. Finger and F. Chayes (1969) Computer reduction of electron probe data. Carnegie Institute of Washington Yearbook 67,210–215.

    Google Scholar 

  • Brown, R.W. (1977) A sample fusion technique for whole rock analysis with the electron microprobe. Geochim. Cosmochim. Acta 41 435–438.

    Article  Google Scholar 

  • Brunetto, M.G. and J.A. Riveros (1984) A modification of Kramers’ law for the x-ray continuum from thick targets. X-ray Spectrom 13 60–63.

    Article  Google Scholar 

  • Campbell, A.J. and R. Gibbons (1966) Specimen contamination in the electron microprobe. In: T.D. McKinley, K.F.J. Heinrich and D.B. Wittry (eds.), The Electron Microprobe John Wiley and Sons, New York, 75–82.

    Google Scholar 

  • Castaing, R. and R. Guinier (1949) Application des sondes éléctroniques à l’analyse métallographique. Proc. Conf. Electron Microscopy, Delft, Martinus Nijhoff, The Hague, 60.

    Google Scholar 

  • Castaing, R. (1951) Application des sondes éléctroniques à une méthode d’analyse ponctuelle chimique et cristallographique. PhD thesis, University of Paris.

    Google Scholar 

  • Craw, D. (1981) Oxidation and microprobe-induced potassium mobility in iron-bearing phyllosilicates from the Otago schists, New Zealand. Lithos 14 49–57.

    Article  Google Scholar 

  • Curgenven, L. and P. Duncomb (1971) Simulation of electron trajectories in a solid target by a simple Monte Carlo technique. Tube Investment Research Laboratories Report No. 303.

    Google Scholar 

  • Deer, W.A., R.A. Howie and J. Zussman (1963) Rock Forming Minerals (Vol. 4). Longman, London.

    Google Scholar 

  • Deer, W.A., R.A. Howie and J. Zussman (1976) An Introduction to the Rock Forming Minerals Longman, London.

    Google Scholar 

  • Drake, M.J. and D.F. Weill (1972) New rare earth element standards for electron microprobe analysis. Chem. Geol 10 179–181.

    Article  Google Scholar 

  • Dunham, A.C. and F.C.F. Wilkinson (1978) Accuracy, precision and detection limits of energy dispersive electron microprobe analysis of silicates. X-ray Spectrom 7 50–56.

    Article  Google Scholar 

  • Eckert, R. (1982) An x-ray fluorescence set-up for trace analysis. Beitr. Elektronenmikroskop. Direktabb. Oberfi 15 41–48.

    Google Scholar 

  • Everhart, T.E. and R.F.M. Thornley (1960) Wide-band detector for microampere low-energy electron currents. J. Sci. Instrum 37 246–248.

    Article  Google Scholar 

  • Exley, R.A. (1980) Microprobe studies of REE-rich accessory minerals: implications for Skye granite petrogenesis and REE mobility in hydrothermal systems. Earth Planet. Sci. Lett 48 97–110.

    Article  Google Scholar 

  • Exley, R.A. and J.V. Smith (1982) The role of apatite in mantle enrichment processes and in the petrogenesis of some alkali basalt suites. Geochim. Cosmochim. Acta 46 1375–1384.

    Article  Google Scholar 

  • Finger, L.W. (1972) The uncertainty in the calculated ferric iron content of a microprobe analysis. Carnegie Institution Yearbook 71 600–603.

    Google Scholar 

  • Fleischer, M. (1980) Glossary of Mineral Species 1980 Mineralogical Record, Tucson, Arizona.

    Google Scholar 

  • Foland, K.A. and M.E. Wagner (1981) A simple method of preparing glasses from rock powders. Am. Mineral 66 1086–1088.

    Google Scholar 

  • Fredriksson, K. (1966) Standards and correction procedures for microprobe analysis of minerals. In: R. Castaing, P. Deschamps and J. Philibert (eds.). X-ray Optics and Micro-analysis (Proc. 4th Int. Congress, Orsay, 1965), Hermann, Paris, 305–309.

    Google Scholar 

  • Gidskehaug, A. (1975) Method to determine the degree of nonstoichiometry of iron-titanium oxides. Geophys. J. Roy. Astr. Soc 41 255–269.

    Article  Google Scholar 

  • Gould, R.W. and J.T. Healey (1975) Secondary fluorescent excitation in the scanning electron microscope: improved sensitivity of energy dispersive analysis. Rev. Sci. Instrum 46 1427–1428.

    Article  Google Scholar 

  • Graham, J., C.R.M. Butt and R.B.W. Vigers (1984) Sub-surface charging, a source of error in microprobe analysis. X-ray Spectrom 13 126–133.

    Article  Google Scholar 

  • Hall, M.G. and G.E. Lloyd (1981) The SEM examination of geological samples with a semiconductor back-scatter electron detector. Am. Mineral 66 362–368.

    Google Scholar 

  • Hall, M.G. and G.E. Lloyd (1983) The SEM examination of geological samples with a semiconductor back-scatter electron detector: reply. Am. Mineral 68 834–844.

    Google Scholar 

  • Heinrich, K.F.J. (1966) X-ray absorption uncertainty. In: T.D. McKinley, K.F.J. Heinrich and D.B. Wittry (eds.), The Electron Microprobe John Wiley and Sons, New York, 296–377.

    Google Scholar 

  • Heinrich, K.F.J. (1981) Electron Beam X-ray Microanalysis Van Nostrand Reinhold, New York.

    Google Scholar 

  • Howie, R.A. and J.V. Smith (1966) X-ray emission microanalysis of rock forming minerals. V: orthopyroxenes. J. Geol 74 443–462.

    Article  Google Scholar 

  • Jarosewich, E., J.A. Nelen and J.A. Norberg (1980) Reference samples for electron microprobe analysis. Geostand. Newslett 4 4348.

    Article  Google Scholar 

  • Jarosewich, E., A.S. Parkes and L.B. Wiggins (1979) Microprobe analysis of four natural glasses and one mineral: an inter-laboratory study of precision and accuracy. In: R.F. Fudali (ed.), Smithsonian Contrib. Earth Sci 22 53–67.

    Google Scholar 

  • Kane, W.T. (1973) Applications of the electron microprobe in ceramics and glass technology. In: C.A. Anderson (ed.), Microprobe Analysis John Wiley and Sons, New York, 241–270.

    Google Scholar 

  • Keil, K. (1973) Applications of the electron microprobe in geology. In: C.A. Andersen (ed.), Microprobe Analysis John Wiley and Sons, New York, 189–239.

    Google Scholar 

  • Kerrick, D.M., L.B. Eminhizer and J.F. Villaume (1973) The role of carbon film thickness in electron microprobe analysis. Am. Mineral 58 920–925.

    Google Scholar 

  • Kniseley, R.N. and F.C. Laabs (1973) Applications of cathodoluminescence in electron microprobe analysis. In: C.A. Andersen (ed.). Microprobe Analysis John Wiley and Sons, New York, 371–382.

    Google Scholar 

  • Kretz, R. (1983) Symbols for rock-forming minerals. Am. Mineral 68 277–279.

    Google Scholar 

  • Linnemann, B. and L. Reimer (1978) Comparison of x-ray elemental analysis by electron excitation and x-ray fluorescence. Scanning 1 109–117.

    Article  Google Scholar 

  • Legkova, G.V., V.G. Voitkevich and O.P. Sharkin (1982) The electron probe determination of the amounts of Fe’ and Fe’ in amphiboles. Mineralogicheski Zhurnal 4 90–93 (in Russian).

    Google Scholar 

  • Long, J.V.P. (1977) Electron microprobe analysis. In: J. Zussman (ed.), Physical Methods in Determinative Mineralogy Academic Press, London, 273–341.

    Google Scholar 

  • Long, J.V.P. and S.O. Agrell (1965) The cathodoluminescence of minerals in thin section. Mineral. Mag 34 318–326.

    Article  Google Scholar 

  • Mason, B. (1968) Kaersutite from San Carlos, Arizona, with comments on the paragenesis of this mineral. Mineral. Mag 36 997–1002.

    Article  Google Scholar 

  • Myklebust, R.L., C.E. Fiori and K.F.J. Heinrich (1981) Spectral processing techniques in a quantitative energy dispersive x-ray microanalysis procedure (Frame C). In: K.F.J. Heinrich, D.E. Newbury, R.L. Myklebust and C.E. Fiori (eds.), Energy Dispersive X-ray Spectrometry NBS Special Publication 604 365–389.

    Google Scholar 

  • Naney, M.T. (1984) A grinding/polishing tool to aid thin section preparation of small samples. Am. Mineral 69 404–405.

    Google Scholar 

  • Nichols, I.A. (1974) A direct fusion method of preparing silicate rock glasses for energy-dispersive electron microprobe analysis. Chem. Geol 14 151–157.

    Article  Google Scholar 

  • Ong, P.S. (1966) Reducing carbon contamination in an electron microprobe and measuring low energy backscattered electrons. In: R. Castaing, P. Deschamps and J. Philibert (eds.), X-ray Optics and Microanalysis (Proc. 4th Int. Congress, Orsay), Hermann, Paris, 181–192.

    Google Scholar 

  • Pawley, J., P. Statham and T. Menzel (1977) Use of beam blanking and digital scan-stop to speed the microanalysis of particles. Scanning Electron Microscopy 1 297–306.

    Google Scholar 

  • Philibert, J. (1963) A method for calculating the absorption correction in electron probe microanalysis. In: H.H. Pattee, V.E. Cosslett and A. Engstrom (eds.), X-ray Optics and X-ray Microanalysis (Proc. 3rd Int. Symp. Stanford, 1962), Academic Press, New York, 379–392.

    Google Scholar 

  • Potts, P.J., A.G. Tindle and M.C. Isaacs (1983) On the precision of electron microprobe data: a new test for the homogeneity of mineral standards. Am. Mineral 68 1237–1242.

    Google Scholar 

  • Rao-Sahib, T.S. and D.B. Wittry (1972) The x-ray continuum from thick targets. In: G. Shinoda, K. Kohra and T. Ichinokawa (eds.), Proc. 6th Int. Conf. X-ray Optics and Microanalysis, Osaka, Tokyo University Press, Tokyo, 131–137.

    Google Scholar 

  • Rao-Sahib, T.S. and D.B. Wittry (1974) X-ray continuum from thick elemental targets for 10–50 keV electrons. J. Appl. Phys 45 5060–5068.

    Article  Google Scholar 

  • Reed, S.J.B. (1965) Characteristic fluorescence corrections in electron-probe micro-analysis. Brit. J. Appl. Phys 16 913–926.

    Article  Google Scholar 

  • Reed, S.J.B. (1972) Electron microprobe analysis at low operating voltage: discussion. Am. Mineral 57 1550–1551.

    Google Scholar 

  • Reed, S.J.B. (1973) Principles of x-ray generation and quantitative analysis with the electron microprobe. In: C.A. Anderson (ed.), Microprobe Analysis John Wiley and Sons, New York, 53–81.

    Google Scholar 

  • Reed, S.J.B. (1975) Electron Microprobe Analysis Cambridge University Press, Cambridge.

    Google Scholar 

  • Reed, S.J.B. and J.V.P. Long (1963) Electron probe measurements near phase boundaries. In: H.P. Pattee, V.E. Cosslett and A. Engstrom (eds.), X-ray Optics and X-ray Microanalysis (Proc. 3rd Int. Symp. Stanford, 1962), Academic Press, New York, 317–327.

    Google Scholar 

  • Reed, S.J.B. and N.G. Ware (1975) Quantitative electron microprobe analysis of silicates using energy dispersive x-ray spectrometry. J. Petrol 16 499–519.

    Google Scholar 

  • Robinson, B.W. and E.H. Nickel (1979) A useful new technique for mineralogy: the backscattered-electron/low vacuum mode of SEM operation. Am. Mineral 64 1322–1328.

    Google Scholar 

  • Robinson, B.W. and E.H. Nickel (1983) The SEM examination of geological samples with a semiconductor backscattered-electron detector: discussion. Am. Mineral 68 840–842.

    Google Scholar 

  • Robinson, V.N.E. (1975) Backscattered electron imaging. In: O. Johari and I. Corvin (eds.), Scanning Electron Microscopy/1975, IITRI, Chicago, 51–60.

    Google Scholar 

  • Russ, J.C. and A.D. Sanborg (1981) Use of windowless detectors for energy dispersive light element x-ray analysis. In: K.J.F. Heinrich, D.E. Newbury, R.L. Myklebust and C.E. Fiori (eds.), Energy Dispersive X-ray Spectroscopy, NBS Special Publication 604 71–95.

    Google Scholar 

  • Schimann, K. and D.G.W. Smith (1980) A new method for the optical fusion of whole-rock powders and their analysis by an electron microprobe technique. Canadian Mineral 18 131–142.

    Google Scholar 

  • Short, M.A. and T.G. Gleason (1982) Performance characteristics of a high resolution Si(Li) detector using a time variant amplifier and a pulsed source of x-rays. Adv. X-ray Anal 25 45–48.

    Article  Google Scholar 

  • Siivola, J. (1969) On the evaporation of some alkali metals during the electron microprobe analysis. Bull. Geol. Soc. Finland 41 8591.

    Google Scholar 

  • Smellie, J.A.T. (1972) Preparation of glass standards for use in x-ray microanalysis. Mineral. Mag 38 614–617.

    Article  Google Scholar 

  • Smellie, J.A.T., N. Cogger and J. Herrington (1978) Standards for quantitative microprobe determination of uranium and thorium with additional information on the chemical formulae of davidite and euxenite-polycrase. Chem. Geol 22 I-10.

    Article  Google Scholar 

  • Smith, D.G.W. (1981) Window contamination of energy dispersive detectors in electron microprobe analysis. X-ray Spectrom 10 78–81.

    Article  Google Scholar 

  • Smith, D.G.W., C.M. Gold and D.A. Tomlinson (1975) The atomic number dependence of the x-ray continuum intensity and the practical calculation of background in energy dispersive electron microprobe analysis. X-ray Spectrom 4 149–156.

    Article  Google Scholar 

  • Smith, D.G.W. and S.J.B. Reed (1981) The calculation of background in wavelength dispersive electron microprobe analysis. X-ray Spectrom 10 198–202.

    Article  Google Scholar 

  • Smith, D.G.W. and S.J.B. Reed (1982) Rare earth element determinations by energy-dispersive electron microprobe techniques. Inst. Phys. Conf. Ser. No. 61 (Proc. EMAG Conf, Cambridge 1981), 159–162.

    Google Scholar 

  • Sommer, S.E. (1972a) Cathodoluminescence of carbonates 1. Characterisation of cathodoluminescence from carbonate solid solutions. Chem. Geol 9 257–273.

    Article  Google Scholar 

  • Sommer, S.E. (1972b) Cathodoluminescence of carbonates 2. Geological applications. Chem. Geol 9 275–284.

    Article  Google Scholar 

  • Springer, G. (1967) The correction for ‘continuous fluorescence’ in electron probe microanalysis. Neues Jahrb. Mineral. Abhandl 106 241–256.

    Google Scholar 

  • Springer, G. (1974) The role of carbon film thickness in electron microprobe analysis: a comment. Am. Mineral 59 1121–1122.

    Google Scholar 

  • Springer, G. and B. Nolan (1976) Mathematical expression for evaluation of x-ray emission and critical absorption energies and of mass absorption coefficients. Can J. Spectrosc 21 134–138.

    Google Scholar 

  • Statham, P.J. (1976) A comparative study of techniques for quantitative analysis of the x-ray spectra obtained with a Si(Li) detector. X-ray Spectrom 5 16–28.

    Article  Google Scholar 

  • Statham, P.J. (1979a) Measurement and use of peak-to-background ratios in x-ray analysis. Mikrochim. Acta Suppl. 8 229–242.

    Google Scholar 

  • Statham, P.J. (1979b) A ZAF procedure for microprobe analysis based on measurement of peak-to-background ratios. In: D.E. Newbury (ed.), Microbeam Analysis-1979 San Francisco Press, San Francisco, 247–253.

    Google Scholar 

  • Statham, P.J. (1981) X-ray microanalysis with Si(Li) detectors. J. Microsc 123 1–23.

    Article  Google Scholar 

  • Statham, P.J. (1983) Prospects for improvement in EDX microanalysis. J. Microsc 130 165–176.

    Article  Google Scholar 

  • Statham, P.J., J.V.P. Long, G. White and K. Kandiah (1974) Quantitative analysis with an energy dispersive detector using a pulsed electron probe and active signal filtering. X-ray Spectrom 3 153–158.

    Article  Google Scholar 

  • Staudigel, H. (1979) Chemical analyses of interlaboratory standards. Initial Repts, Deep Sea Drilling Project, Vols. 51, 52, 53, Part II, US Govt. Printing Office, Washington DC, 1331–1333.

    Google Scholar 

  • Styles, M.T. and B.R. Young (1983) Fluocerite and its alteration products from the Afu Hills, Nigeria. Mineral. Mag 47 41–46.

    Article  Google Scholar 

  • Sweatman, T.R. and J.V.P. Long (1969) Quantitative electron-probe microanalysis of rock forming minerals. J. Petrol 10 332–379.

    Article  Google Scholar 

  • Urch, D.S. and P.R. Wood (1978) The determination of the valency of manganese in minerals by x-ray fluorescence spectroscopy. X-ray Spectrom 7, 9–12.

    Article  Google Scholar 

  • Walter, L.S. (1966) A convenient method for the preparation of silicate standards for microprobe analysis. In: R. Castaing, P. Deschamps and J. Philibert (eds.), X-ray Optics and Microanalysis (Proc. 4th Int. Congress, Orsay), Hermann, Paris, 615–621.

    Google Scholar 

  • Weast, R.C. (editor-in-chief) (1973) Handbook of Chemistry and Physics (54th edn.). Chemical Rubber Company Press, Cleveland, Ohio.

    Google Scholar 

  • White, E.W. and G.G. Johnson (1970) X-ray Emission and Absorption Wavelengths and Two-Theta Tables (2nd edn.). ASTM Data Series DS 37A, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  • Wicks, F.J. and A.G. Plant (1983) The accuracy and precision of routine energy-dispersive electron microprobe analysis of serpentine. X-ray Spectrom 12 59–66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Potts, P.J. (1987). Electron probe microanalysis. In: A Handbook of Silicate Rock Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3270-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3270-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-216-93209-8

  • Online ISBN: 978-1-4615-3270-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics