Skip to main content

Relaxation of Frenkel-Type Rotational and Vibrational Excitons in Diatomic Molecular Crystals

  • Chapter
Ultrashort Processes in Condensed Matter

Part of the book series: NATO ASI Series ((NSSB,volume 314))

  • 92 Accesses

Abstract

The study of vibrational and rotational relaxation in condensed phases has acquired a new dimension with the development of ultrashort laser pulses and the corresponding techniques for time-resolved optical measurements. Nowadays, infrared-as well as Raman-active transitions can be interrogated with shorter than picosecond (1 ps = 10-12 s) time-resolution using, e.g., infrared absorption saturation [1–4] and transient hole-burning [5] spectroscopy and a variety of time-resolved techniques of stimulated Raman scattering [6–10]. They are complementary to methods in which the linewidths and -shapes of the transitions are measured with high spectral resolution, such as in infrared absorption and persistent [11] hole-burning spectroscopy, and in spontaneous and stimulated Raman scattering [8] [12, Chap. 4]. In most optical investigations only the k ≃ o excitations can be investigated because of the small wavevector of the light and the requirement of wavevector conservation. The goal of these experiments is to acquire a detailed understanding of the relaxation mechanisms of the molecular excitations in solids, relating them to different microscopic effects which are specific for the system under study: anharmonic interactions, impurity scattering, compositional or structural disorder, etc…. Excellent reviews have been published during the past several years, covering the study of the relaxation of internal and external vibrational modes in molecular crystals, and its experimental methods [7, 13–16].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. C. M. Planken, L. D. Noordam, J.T.M. Kennis, and A. Lagendijk, Femtosecond time-resolved study of phonon—polaritons in LiNb3, Phys. Rev. B 45:7106 (1992).

    Google Scholar 

  2. H. J. Bakker, P. C. M. Planken, L. Kuipers, and A. Lagendijk, Ultrafast infrared saturation spectroscopy of chloroform, bromoform, and iodoform, J. Chem. Phys. 94:1730 (1991).

    Google Scholar 

  3. E. J. Heilweil, M. P. Cassassa, R. R. Cavanagh, and J. C. Stephenson, Picosecond vibrational energy transfer studies of surface adsorbates, Ann. Rev. Phys. Chem. 40:143 (1989).

    Google Scholar 

  4. J. D. Beckerle, R. R. Cavanagh, M. P. Cassassa, E. J. Heilweil, and J. C. Stephenson, Subpicosecond transient infrared spectroscopy of adsorbates - vibrational dynamics of Co/Pt(111), J. Chem. Phys. 95:5403 (1991).

    Google Scholar 

  5. H. Graener, T. Q. Ye, and A. Laubereau, Transient-hole burning in the infrared spectrum of a polymer with intense picosecond pulses, Phys. Rev. B 41:2597 (1990).

    Google Scholar 

  6. A. Laubereau and W. Kaiser, Vibrational dynamics of liquids and solids investigated by picosecond light pulses, Rev. Mod. Phys. 50:607 (1978).

    Google Scholar 

  7. S. Califano, Phonon lifetimes in molecular crystals, in: “Applied Physics Spectroscopy”, page 269, W. Demtröder and M. Inguscio, eds., Plenum Press, New York - London (1990).

    Google Scholar 

  8. P. Ranson, R. Ouillon, J.-P. Lemaistre, and G. M. Gale, Incoherent and coherent high resolution Raman spectroscopy: Complementary tools to study bound states in molecular crystals, in: “Recent Trends in Raman Spectroscopy”, page 127, S. B. Bauergie and S. S. Jha, eds., World Scientific, Singapore (1989).

    Google Scholar 

  9. M. De Mаzière, C. Sierens, and D. Schoemaker, Analysis of dephasing signal in picosecond stimulated-Raman-gain experiments, J. Opt. Soc. Amer. B 6:2376 (1989).

    Google Scholar 

  10. M. van Exter and A. Lagendijk, What is measured in a time-resolved stimulated Raman experiment? Opt. Commun. 56:191 (1985).

    Google Scholar 

  11. A. J. Sievers and W. E. Moerner, Persistent infrared hole-burning for impurity vibrational modes in solids, in: “Persistent Spectral Hole-Burning: Science and Applications”, vol. 44 of Topics in Current Physics, W. E. Moerner, ed., Springer-Verlag, Berlin (1988).

    Google Scholar 

  12. M. D. Levenson and S. S. Kano, “Introduction to Nonlinear Laser Spectroscopy”, Academic Press, New York-London (1988).

    Google Scholar 

  13. S. Califano, V. Schettino, and N. Neto, “Lattice Dynamics in Molecular Crystals”, vol. 26 of Lecture Notes in Chemistry, Springer Verlag, Berlin (1981).

    Google Scholar 

  14. S. Velsko and R. M. Hochstrasser, Studies of vibrational relaxation in low-temperature molecular crystals using coherent Raman spectroscopy, J. Phys. Chem. 89:2240 (1985).

    Google Scholar 

  15. D. D. Dlott, Optical phonon dynamics in molecular crystals, Ann. Rev. Phys. Chem. 37:157 (1986).

    Google Scholar 

  16. S. Califano and V. Schettino, Vibrational relaxation in molecular crystals, Intern. Rev. Phys. Chem. 7:19 (1988).

    Google Scholar 

  17. M. Vanhimbeeck, H. De Raedt, A. Lagendijk, and D. Schoemaker, Calculation of rotational T2 relaxation in solid parahydrogen and orthodeuterium, Phys. Rev. B 33:4264 (1986).

    Google Scholar 

  18. J. i. Igarashi, Calculation of Raman linewidth due to roton in solid parahydrogen with orthohydrogen impurities, J. Phys. Soc. Jpn. 56:4586 (1987).

    Google Scholar 

  19. X. Y. Chen, E. Goovaerts, and D. Schoemaker, Scattering-model calculation of the impurity-induced dephasing relaxation rates of the Raman-active.J=2 rotons in parahydrogen, Phys. Rev. B 38:1450 (1988).

    Google Scholar 

  20. P. Procacci, G. F. Signorini, and R. G. Della Valle, Efficient calculation of high order self-energy corrections to the phonon linewidths: application to α-nitrogen, to be published.

    Google Scholar 

  21. R. Guillon, C. Turc, J.-P. Lemaistre, and P. Ranson, High resolution Raman spectroscopy in the α and β crystalline phases of N2, J. Chem. Phys. 93:3005 (1990).

    Google Scholar 

  22. G. F. Signorini, P. F. Fracassi, R. Righini, and R. G. Della Valle, Energy decay mechanisms and anharmonic lattice dynamics: The case of solid nitrogen, Chem. Phys. 100:315 (1985).

    Google Scholar 

  23. F. Ho, W.-S. Tsay, J. Trout, S. Velsko, and R. M. Hochstrasser, Picosecond time-resolved CARS in isotopically mixed crystals of benzene, Chem. Phys. Lett. 141:97 (1983).

    Google Scholar 

  24. S. Velsko, J. Trout, and R. M. Hochstrasser, Quantum beating of vibrational factor group components in molecular solids, J. Chem. Phys. 79:2114 (1983).

    Google Scholar 

  25. J. Trout, S. Velsko, R. Bozio, P. L. Decola, and R. M. Hochstrasser, Nonlinear Raman study of line shapes and relaxation of vibrational states of isotopically pure and mixed crystals of benzene, J. Chem. Phys. 81:4746 (1985).

    Google Scholar 

  26. B. H. Hesp and D. A. Wiersma, Vibrational relaxation in neat crystals of naphthalene by picosecond CARS, Chem. Phys. Lett. 75:423 (1980).

    Google Scholar 

  27. K. Duppen, B. M. M. Hesp, and D. A. Wiersma, A picosecond CARS study of librons in naphthalene, Chem. Phys. Lett. 79:399 (1981).

    Google Scholar 

  28. D. D. Dlott, C. L. Schosser, and E. L. Chronister, Temperature-dependent vibrational dephasing in molecular crystals: A picosecond CARS study, Chem. Phys. Lett. 90:386 (1982).

    Google Scholar 

  29. R. Guillon, P. Ranson, and S. Califano, Temperature dependence of the bandwidths and frequencies of some anthracene phonons. High-resolution Raman measurements, Chem. Phys. 91:119 (1984).

    Google Scholar 

  30. C. L. Schosser and D. D. Dlott, A picosecond CARS study of vibron dynamics in molecular crystals: Temperature dependence of homogeneous and inhomogeneous linewidths, J. Chem. Phys. 80:1394 (1984).

    Google Scholar 

  31. T. J. Kosic, R. E. Cline Jr., and D. D. Dlott, Picosecond coherent Raman investigation of the relaxation of low frequency vibrational modes in amino acids and peptides, J. Chem. Phys. 81:4932 (1984).

    Google Scholar 

  32. J. Kalus, Temperature dependence of phonon-frequencies and -linewidths for weakly anharmonic molecular crystals, J. de Chimie Physique 82:137 (1985).

    Google Scholar 

  33. R. Righini, L. Angeloni, E. Castellucci, and P. Foggi, Temperature dependent dephasing of internal phonons in ionic crystals: Picosecond CARS measurements in K2SO4 and KCIO4; crystals, J. Molecular Struct. 175:123 (1988).

    Google Scholar 

  34. R. Righini, L. Angeloni, E. Castellucci, P. Foggi, and 5. Califano, Relaxation of vibrational excitons in molecular-ionic crystals measured by picosecond time-resolved CARS, Croatica Chemica Acta 61:621 (1988).

    Google Scholar 

  35. L. Angeloni and R. Righini, Anomalous temperature dependence of the vibrational exciton lifetime in NaNO3 crystal, Chem. Phys. Lett. 154:115 (1989).

    Google Scholar 

  36. R. Righini, L. Angeloni, P. Foggi, E. Castellucci, and S. Califano, Temperature-dependent (10–240 К) relaxation of vibrational excitons in KCIO4 crystal, Croatica Chemica Acta 61:621 (1988).

    Google Scholar 

  37. R. Bini, P. Foggi, P. R. Salvi, R. Simone, and V. Schettino, Vibrational relaxation of Davidov components of the 940 cm-1 mode in KCIO4, J. Molecular Struct. 219:43 (1990).

    Google Scholar 

  38. G. M. Gale and P. Schanne, Time-resolved relaxation of one-and two-vibrou states in the rubidium perchlorate crystal, Chem. Phys. 151:127 (1991).

    Google Scholar 

  39. R. Ouillon, P. Ranson, and S. Califano, High resolution Raman spectra of the Fermi diad in crystalline CO2 at 6 K, J. Chem. Phys. 83:2162 (1985).

    Google Scholar 

  40. G. M. Gale, P. Guyot-Sionnest, W. Q. Zheng, and C. Flytzanis, Time-resolved nonlinear spectroscopy of a Fermi doublet: The {νl, 2ν2} Fermi resonance in CO2 solid, Phys. Rev. Lett. 54:823 (1985).

    Google Scholar 

  41. R. Ouillon and P. Ranson, Time resolved study of the Fermi component ω(Ag) in solid CO2 at T ≈ 5 K, J. Chem. Phys. 85:1295 (1986).

    Google Scholar 

  42. G. M. Gale, P. Schanne, and P. Ranson, Vibrational dephasing of biphonon satellites in solid CO2, Chem. Phys. 131:455 (1989).

    Google Scholar 

  43. P. Ranson, R. Ouillon, and S. Califano, Relaxation processes in molecular crystals. Temperature dependence of Raman active lattice phonons of crystalline CO2, J. Chem. Phys. 89:3592 (1988).

    Google Scholar 

  44. L. Angeloni, R. Righini, P. R. Salvi, and V. Schettino, Relaxation dynamics of Fermi doublets in CS2 crystals, Chem. Phys. Lett. 154:432 (1989).

    Google Scholar 

  45. F. Vallée, G. M. Gale, and C. Flytzanis, Time-and space-resolved study of a dressed polariton: The polariton Fermi resonance in ammonium chloride, Phys. Rev. Lett. 61:2102 (1988).

    Google Scholar 

  46. M. Baggen and A. Lagendijk, Time-resolved study of vibrational relaxation in solid CO2 at high pressures, Chem. Phys. Lett. 177:361 (1991).

    Google Scholar 

  47. I. I. Abram, R. M. Hochstrasser, J. E. Kohl, M. G. Semack, and D. White, Coherence loss for vibrational and librational excitations in solid hydrogen, J. Chem. Phys. 71:153 (1979).

    Google Scholar 

  48. I. I. Abram, R. M. Hochstrasser, J. E. Kohl, and M. G. Semack, Decay of vibrational coherence in ortho-para mixtures of solid hydrogen, Chem. Phys. Lett. 71:405 (1980).

    Google Scholar 

  49. S. R. J. Breuck and R. M. Osgood, Vibrational energy relaxation in liquid N2-CO mixtures, Chem. Phys. Lett. 39:568 (1976).

    Google Scholar 

  50. H.W. Löwen, K. D. Bier, and H. J. Jodl, Vibron-phonon excitations in the molecular crystals N2, 02, and CO by Fourier transform infrared and Raman studies, J. Chem. Phys. 93:8565 (1990).

    Google Scholar 

  51. C.-Y. Kuo, R. J. Kerl, N. D. Patel, and C. K. N. Patel, Nonradiative relaxation of excited vibrational states of solid hydrogen, Phys. Rev. Lett. 53:2575 (1984).

    Google Scholar 

  52. J. Van Kranendonk, “Solid hydrogen”, Plenum Press, New York, London (1983).

    Google Scholar 

  53. T. A. Scott, Solid and liquid nitrogen, Phys. Reports 27:89 (1976).

    Google Scholar 

  54. E. Goovaerts, X. Y. Chen, A. Bouwen, and D. Schoemaker, Relaxation times of k = 0 rotons in pure parahydrogen crystals and roton scattering by orthohydrogen impurities, Phys. Rev. Lett. 57:479 (1986).

    Google Scholar 

  55. C. Sierens, A. Bouwen, E. Goovaerts, M. De Mazieèe, and D. Schoemaker, Ro-ton relaxation in parahydrogen crystals measured by time-resolved stimulated Raman gain, Phys. Rev. A 37:4769 (1988).

    Google Scholar 

  56. M. Leblans, A. Bouwen, C. Sierens, W. Joosen, E. Goovaerts, and D. Schoemaker, Dephasing relaxation of J=2 rotons in parahydrogen crystals doped with hydrogen-deuterium impurities, Phys. Rev, B 40:6674 (1989).

    Google Scholar 

  57. J. De Kinder, E. Goovaerts, A. Bouwen, and D. Schoemaker, Dephasing times of the stretching vibration in liquid N2 and of the vibrons in the α and β crystalline phases, J. Lumin. 45:423 (1990).

    Google Scholar 

  58. J. De Kinder, E. Goovaerts, A. Bouwen, and D. Schoemaker, Dephasing times of the vibrons in α-N2 and in α-(15N2)x(14N2)1-x, Phys. Rev. B 42:5953 (1990).

    Google Scholar 

  59. J. De kinder, A. Bouwen, E. Goovaerts, and D. Schoemaker, Suppression of vibrou state formation in Arx(N2)1_x mixed crystals, J. Chem. Phys. 95:2269 (1991).

    Google Scholar 

  60. J. De Kinder, E. Goovaerts, A. Bouwen, and D. Schoemaker, Raman study of the librational states in α-Arx(N2)1_x mixed crystals, J. Lumin. 53:72 (1992).

    Google Scholar 

  61. T. Morose, D.P. Weliky, and T. Oka, The stimulated Raman gain spectrum of the Q ← 1 transition of solid parahydrogen, J. Mol. Spectr. 153:760 (1992).

    Google Scholar 

  62. R. S. Knox, “Theory of Excitons”, vol. 5 of Solid State Physics, Academic Press, New York-London (1963).

    Google Scholar 

  63. G. W. Robinson, Electronic and vibrational excitons in molecular crystals, Ann. Rev. Phys. Chem. 21:429 (1970).

    Google Scholar 

  64. C. B. Harris and D. A. Zwemer, Coherent energy transfer in solids, Ann. Rev. Phys. Chem. 29:473 (1978).

    Google Scholar 

  65. J. Klaftner and J. Jortner, Effects of structural disorder on the optical properties of molecular crystals, J. Chem. Phys. 68:1513 (1978).

    Google Scholar 

  66. I. I. Abram and R. M. Hochstrasser, Theory of the time evolution of exciton coherence in weakly disordered crystals, J. Chem. Phys. 72:3617 (1980).

    Google Scholar 

  67. I. I. Abram and R. M. Hochstrasser, Optical coherence properties of collective molecular systems: A comparison of the statistical and quantum approaches, J. Chem. Phys. 75:337 (1981).

    MathSciNet  Google Scholar 

  68. V. M. Kenkre and P. Reineker, “Exciton Dynamics in Molecular Crystals and Aggregates”, vol. 94 of Springer Tracts in Modern Physics,Springer-Verlag, Berlin-Heidelberg-New York (1982).

    Google Scholar 

  69. I. F. Silveгa, The solid molecular hydrogens in the condensed phase: Fundamentals and static properties, Rev. Mod. Phys. 52:393 (1980).

    Google Scholar 

  70. K. Kobashi and T. Kihara, Molecular librations and the α-γ phase transition in solid nitrogen based on the Kihara potential, J. Chem. Phys. 72:378 (1980).

    Google Scholar 

  71. T. N. Antsygina, V. A. Slusarev, Y. A. Freiman, and A. I. Erenburg, An-harmonic effects in librational motion of N2-type crystal, J. Low Temp. Phys. 56:331 (1984).

    Google Scholar 

  72. G. Zumofen and K. Dressler, A priori calculation of the vibron band and of the vibron-phonon and two-phonon combination bands in the Raman spectrum of solid α-N2, J. Chem. Phys. 64:5198 (1976).

    Google Scholar 

  73. G. Zumofen, K. Dressler, M. M. Thiéry, and V. Chandrasekharan, On the a priori calculation of the vibron band in the Raman spectrum of solid α-N2, J. Chem. Phys. 67:5983 (1978).

    Google Scholar 

  74. A. P. J. Jansen, W. J. Briels, and A. van der Avoird, Ab initio description of large molecule motions in solid N2. I. Librons in the ordered α and γ phases, J. Chem. Phys. 81:3648 (1984).

    Google Scholar 

  75. A. van der Avoird, W. J. Briels, and A. P. J. Jansen, Ab initio description of large molecule motions in solid N2. I. Librons in the β-phase and the α - β phase transition, J. Chem. Phys. 81:3658 (1984).

    Google Scholar 

  76. W. B. J. M. Janssen, and A. van der Avoird, Dynamics and phase transitions in solid ortho/para hydrogen and deuterium from an ab initio potential, Phys. Rev. B 42:838 (1990).

    Google Scholar 

  77. R. W. Hellwarth, Third-order optical susceptibilities of liquids and solids, Progr. Quant. Electr. 5:1 (1977).

    Google Scholar 

  78. M. van Exter, “Ultra-fast Spectroscopy of Vibrational Excitations and Surface Plasmons”, Ph.D. thesis, Universiteit van Amsterdam, The Netherlands (1988).

    Google Scholar 

  79. M. De Mazière and D. Schoemaker, Phase modulation technique for eliminating phase noise in picosecond T2 measurements based on stimulated Raman gain, J. Appt. Phys. 58:1439 (1985).

    Google Scholar 

  80. M. van Exter and A. Lagendijk, Converting an АM radio into a high-frequency lock-in amplifier in a stimulated Raman experiment, Rev. Sci. Instrum. 57:390 (1986).

    Google Scholar 

  81. M. van Exter, A. Lagendijk, and E. Spaans, Interference phenomena in time-resolved stimulated Raman measurements, Opt. Commun. 59:411 (1986).

    Google Scholar 

  82. R. D. Beck, M. F. Hineman, and J. W. Nibler, Stimulated Raman probing of supercooling and phase transitions in large N2 clusters formed in free expansions, J. Chem. Phys. 92:7068 (1990).

    Google Scholar 

  83. G. Herzberg, “Molecular Spectra and Molecular Structure: I. Spectra of Diatomic Molecules”, Van Nostrand Reinhold, second edition (1950).

    Google Scholar 

  84. I. F. Silvera, “Simple Molecular Systems at Very High Density”, Plenum Press, New York and London (1989).

    Google Scholar 

  85. W. Press, B. Janik, and H. Grimm, Frozen-in orientational disorder in mixtures of solid nitrogen and argon, Z. Phys. B - Cond. Matter 49:9 (1982).

    Google Scholar 

  86. Н. Klee, H. O. Carmesin, and K. Knorr, Quadrupolar glass state of Ar1-x(N2)x, Phys. Rev. Lett. 61:1855 (1988).

    Google Scholar 

  87. Н. Klee and K. Knorr, Orientational-ordering transition fcc-Pa3 of Arl-x(N2)x, Phys. Rev. B 43:8658 (1991).

    Google Scholar 

  88. J. De Kinder, E. Goovaerts, A. Bouwen, and D. Schoemaker, Evidence for the orientationally disordered cubic phase of Ar0.15(N2)0.85 from librational and vibrational Raman scattering, Phys. Rev. B 44:10369 (1991).

    Google Scholar 

  89. A. Lagendijk, R. J. Wijngaarden, and I. F. Silvera, A model for the determination of the crystal field potential in H2 and D2 from high pressure experiments, Phys. Lett. 99A:97 (1983).

    Google Scholar 

  90. J. Van Kranendonk and G. Karl, Theory of the rotational and vibrational excitations in solid parahydrogen, and the frequency analysis of the infrared and Raman spectra, Rev. Mod. Phys. 40:531 (1968).

    Google Scholar 

  91. V. Soots, E. J. Allin, and H. L. Welsh, Variation of the Raman spectrum of solid hydrogen with ortho-para ratio, Can. J. Phys. 43:1985 (1965).

    Google Scholar 

  92. J. P. McTague, I. F. Silvera, and W. N. Hardy, Rotational Raman scattering in single crystal parahydrogen, orthodeuterium and HD, in: Proc. Intern. Conf. on Light Scattering in Solids, page 456, M. Balkanski, ed., Flammarion, Paris (1971).

    Google Scholar 

  93. P. J. Berkhout and I. F. Silvera, Mixing of rotational states, breakdown of the independent polarizability approximation and renormalized interactions in solid hydrogens under pressure, Communications on Physics 2:109 (1977).

    Google Scholar 

  94. L. Lassche, I. F. Silvera, and A. Lagendijk, Observation of the J=4 roton band in solid deuterium under pressure, Phys. Rev. Lett. 65:2677 (1990).

    Google Scholar 

  95. A. Lagendijk and I. F. Silvera, Roton softening in the solid hydrogens, Phys. Lett. 84А:28 (1981).

    Google Scholar 

  96. J. i. Igarashi, An anharmonic theory of the rotational excitation in solid orthodeuterium under high pressure, J. Phys. Soc. Jpn. 53:2629 (1984).

    Google Scholar 

  97. N. H. Rich, M. J. Clouter, H. Kiefte, and S. F. Ahmad, Low frequency Raman spectra of the liquid and plastic crystal phases of O2, N2, CO, and of Ar crystals with these molecules as guests, Can. J. Phys. 60:1358 (1982).

    Google Scholar 

  98. G. Pangilinan, G. Guelachvili, R. Sooryakumar, K. N. Rao, and R. H. Tipping, Raman study of the αβ structural phase transition of solid N2, Phys. Rev. B 39:2522 (1989).

    Google Scholar 

  99. M.-C. Chan and T. Oka, Observation of the U1←0(1) transition of solid deuterium, J. Chem. Phys. 93:979 (1990).

    Google Scholar 

  100. J. De Kinder, “Dephasing of the Vibrons in Solid Nitrogen”, Ph.D. thesis, Universiteit Antwerpen (U.I.A.), Belgium (1991).

    Google Scholar 

  101. R. Beck and J. W. Nibler, High resolution Raman loss spectra of solid α-nitrogen and of matrix-isolated molecules, Chem. Phys. Lett. 159:79 (1989).

    Google Scholar 

  102. U. Buontempo, S. Cunsolo, P. Dore, and L. Nencini, Far infrared absorption spectra in liquid and solid H2, Can. J. Phys. 60:1422 (1982).

    Google Scholar 

  103. S. Velsko and R. M. Hochstrasser, Theory of vibrational coherence and population decay in isotopically mixed crystals, J. Chem. Phys. 82:2180 (1985).

    Google Scholar 

  104. P. J. Berkhout, “Properties of Solid Molecular Hydrogens as a Function of Density arid Ortho-Para Concentration as Studied by Raman Scattering”, Ph.D. thesis, Universiteit van Amsterdam, The Netherlands (1978).

    Google Scholar 

  105. C. Turc, B. Perrin, R. Ouillon, and P. Ranson, Effect of orientational and substitutional disorder on the N2 vibrational exciton in N2/CO mixed crystals, J. Chem. Phys. 161:39 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goovaerts, E. (1993). Relaxation of Frenkel-Type Rotational and Vibrational Excitons in Diatomic Molecular Crystals. In: Bron, W.E. (eds) Ultrashort Processes in Condensed Matter. NATO ASI Series, vol 314. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2954-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2954-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6284-5

  • Online ISBN: 978-1-4615-2954-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics