Skip to main content

Sample Treatment in the Laboratory

  • Chapter
Analytical Sedimentology

Abstract

Safety is the prime consideration when performing any work in the laboratory. Chapter 1 reviews salient considerations. Once samples have been collected and taken to the laboratory, they can be treated in a variety of ways depending on the type of sample and the information required from subsequent laboratory studies. Because the sample treatments required depend on the type of analytical work planned, it is important to consider what analytical work is necessary before deciding how to treat the samples. A flowchart showing some of the alternative analytical sequences that could be applied is shown in Fig. 5–1. The following sections of this chapter describe some of the most common sample treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Bibliography

Pretreatment of Sediment Samples (see also general laboratory books listed in Chapter 1)

  • Anderson, J. U., 1963, Effects of pretreatments on soil dispersion. New Mexico State College Agricultural Experimental Station Research Report 78, 14p.

    Google Scholar 

  • Bodine, M. W., Jr., and T. H. Fernald, 1973, EDTA dissolution of gypsum, anhydrite, and Ca-Mg carbonates. Journal of Sedimentary Petrology 43:1152–6.

    Google Scholar 

  • Bouma, A. H., 1969, Methods for the Study of Sedimentary Structures. Wiley-Interscience, New York, 458p.

    Google Scholar 

  • Brewer, R., 1964, Fabric and Mineral Analysis of Soils. Wiley, New York.

    Google Scholar 

  • Charm, W. B., 1967, Freeze drying as a rapid method of disaggregating silts and clays for dry particle size analysis. Journal of Sedimentary Petrology 37:970–1.

    Google Scholar 

  • Drosdorff, M., and E. Truog, 1935, A method for removing iron oxide from minerals. American Mineralogist 20:669–73.

    Google Scholar 

  • Edwards, A. P., and J. M. Bremner, 1965, Dispersion of soil particles by sonic vibrations. Journal of Soil Science 18:47–63.

    Google Scholar 

  • Felix, C. J., 1963, Mechanical sample disaggregation in palynology. Micropaleontology 9:337–9.

    Google Scholar 

  • French, D. H., S. S. J. Warne, and M. T. Sheedy, 1984, The use of ion-exchange resins for the dissolution of carbonates. Journal of Sedimentary Petrology 54:641–3.

    Google Scholar 

  • Funkhouser, J. W., and W. R. Evitt, 1959, Preparation techniques for acid-insoluble microfossils. Micropaleontology 5:369–75.

    Google Scholar 

  • Gipson, M. J., 1963, Ultrasonic disaggregation of shale. Journal of Sedimentary Petrology 33:955–8.

    Google Scholar 

  • Glover, E. D., 1961, Method of solution of calcareous material using the complexing agent EDTA. Journal of Sedimentary Petrology 31:622–26.

    Google Scholar 

  • Kerrigan, G. C., 1971, A sample preparation device for X-ray fluorescence. Journal of Physical and Earth Sciences Instruments 4:544–5.

    Google Scholar 

  • Kravitz, J. H., 1966, Using an ultrasonic disruptor as an aid to wet sieving. Journal of Sedimentary Petrology 36:811–2.

    Google Scholar 

  • Krumbein, W. C., 1933, Dispersion of fine grained sediments for mechanical analysis. Journal of Sedimentary Petrology 3:121–35.

    Google Scholar 

  • Kunze, G. W., 1965, Pretreatment for mineralogical analysis. in C. A. Black (ed.), Methods of Soil Analysis, vol. 1, American Society of Agronomy, Inc., Madison, Wisc. pp. 568–77.

    Google Scholar 

  • Leith, C. J., 1950, Removal of iron oxide coatings from mineral grains. Journal of Sedimentary Petrology 20:174–6.

    Google Scholar 

  • Milner, H. B., 1962, Methods in Sedimentary Petrography, vol. 1. Allen & Unwin, London, 643p.

    Google Scholar 

  • Mitchell, B. D., and R. C. MacKenzie, 1954, Removal of free iron oxide from clays. Soil Science 77:173–84.

    Google Scholar 

  • Moston, R. P., and A. I. Johnson, 1964, Ultrasonic dispersion of samples of sedimentary deposits. United States Geological Survey Professional Paper 501-C, pp. C159–60.

    Google Scholar 

  • Mueller, G., 1967, Methods in Sedimentary Petrology, H.-U. Schmincke (trans.). Hafner, New York.

    Google Scholar 

  • Nelsen, T. A., 1983, Time- and method-dependent size distributions of fine-grained sediments. Sedimentology 30:249–59.

    Google Scholar 

  • Overbey, W. K., Jr., and B. R. Henniger, 1970, Disaggregation of sandstones by ultrasonic energy. Journal of Sedimentary Petrology 40:465–72.

    Google Scholar 

  • Percival, S. F., Jr., E. D. Glover, and L. B. Gibson, 1963, Carbonate rocks: Cleaning with suspensions of hydrogen ion exchange resins. Science 142:1456–7.

    Google Scholar 

  • Prokopovich, N. P., and C. D. Nish, 1967, Methodology of mechanical analysis of subaqueous sediments. Journal of Sedimentary Petrology 37:96–101.

    Google Scholar 

  • Savage, E. L., 1969, Ultrasonic disaggregation of sandstones and siltstones. Journal of Sedimentary Petrology 39:375–8.

    Google Scholar 

  • Suczek, C. A., 1983, Disaggregation of quartzite. Journal of Sedimentary Petrology 53:672–3.

    Google Scholar 

  • Sulcek, Z., and P. Povondra, 1989, Methods of Decomposition in Inorganic Analysis. CRC Press, Boca Raton, Fla., 368p.

    Google Scholar 

  • Tchillingarian, G., 1952, Study of the dispersing agents. Journal of Sedimentary Petrology 22:229–33.

    Google Scholar 

  • Tolmachoff, I., 1932, Crystallization of certain salts used for the disintegration of shales. Science 76:147–8.

    Google Scholar 

  • Troell, E., 1931, The use of sodium hypobromite for the oxidation of organic matter in mechanical analyses of soils. Journal of Agricultural Science 21:476–84.

    Google Scholar 

  • Truog, E., J. R. Taylor, R. W. Pearson, M. E. Weeks, and R. W. Simonson, 1937, Procedure for special type of mechanical and mineralogical soil analysis. Soil Science Society of America Proceedings 1:101–12.

    Google Scholar 

  • Walker, P. H., and J. Hutka, 1973, Grain fragmentation in preparing samples for particle size analysis. Soil Science Society of America Proceedings 37:278–80.

    Google Scholar 

  • Zingula, R. P., 1968, A new breakthrough in sample washing. Journal of Paleontology 42:1092.

    Google Scholar 

Grain Mount and Thin-Section Preparation

  • Ashley, G. M., 1973, Impregnation of fine-grained sediments with a polyester resin: A modification of Altemuller’s method. Journal of Sedimentary Petrology 43:298–301.

    Google Scholar 

  • Awadallah, S. A., 1991, A simple technique for vacuum impregnation of unconsolidated, fine-grained sediments. Journal of Sedimentary Petrology 61:632–3.

    Google Scholar 

  • Carver, R. E., 1971, Procedures in Sedimentary Petrology. Wiley-Interscience, New York, 653p.

    Google Scholar 

  • Chiou, W. A., L. E. Shephard, W. R. Bryant, and M. A. Looney III, 1983, A technique for preparing highwater content clayey sediments for thin and ultrathin section study. Sedimentology 30:295–9.

    Google Scholar 

  • Conway, J. S., 1982, A simplified method for impregnation of soils and similar clay-rich sediments. Journal of Sedimentary Petrology 52:650–1.

    Google Scholar 

  • Crevello, P. D., J. M. Rine, and D. E. Lanesky, 1981, A method for impregnating unconsolidated cores and slabs of calcareous and terrigenous muds. Journal of Sedimentary Petrology 51:658–60.

    Google Scholar 

  • Franklin, J. A., 1969, Rock impregnation using monomers, epoxide, and unsaturated polyester resins. Journal of Sedimentary Petrology 39:1251–3.

    Google Scholar 

  • Gardner, K. L., 1980, Impregnation technique using colored epoxy to define porosity in petrographic thin sections. Canadian Journal of Earth Sciences 17:1104–7.

    Google Scholar 

  • Ginsburg, R. N., H. A. Bernard, R. A. Moody, and E. E. Daigle, 1966, The Shell method of impregnating cores of unconsolidated sediments. Journal of Sedimentary Petrology 36:1118–25.

    Google Scholar 

  • Jim, C. Y., 1985, Impregnation of moist and dry unconsolidated clay samples using Spurr resin for microstructural studies. Journal of Sedimentary Petrology 55:597–9.

    Google Scholar 

  • Jordan, C. F., Jr., and C. D. Roady, 1987, A practical method for preparing thin sections of well cuttings. Journal of Sedimentary Petrology 57:759–60.

    Google Scholar 

  • Lindholm, R. C., and D. A. Dean, 1973, Ultra-thin sections in carbonate petrology: A valuable tool. Journal of Sedimentary Petrology 43:295–7.

    Google Scholar 

  • Lumsden, D. N., 1979, Discrepancy between thin-section and X-ray estimates of dolomite in limestone. Journal of Sedimentary Petrology 49:429–36.

    Google Scholar 

  • Marshall, C. E., and C. D. Jeffries, 1946, Mineralogical methods in soil research: I. The correlation of soil types and parent materials with supplementary information on weathering processes. Soil Science Society of America Proceedings 10:397–405.

    Google Scholar 

  • Martin, R., P. E. Litz, and W. D. Huff, 1979, A new technique for making thin sections of clayey sediments. Journal of Sedimentary Petrology 49:641–3.

    Google Scholar 

  • Middleton, L. T., and M. J. Kraus, 1980, Simple technique for thin-section preparation of unconsolidated materials. Journal of Sedimentary Petrology 50:622–3.

    Google Scholar 

  • Minoura, N., and C. D. Lonley, 1971, Technique for impregnating porous rock samples with low-viscosity epoxy resin. Journal of Sedimentary Petrology 41:858–61.

    Google Scholar 

  • Nentwich, F. W., and R. W. Yole, 1991, Polished thin section preparation of fine-grained siliciclastic rocks. Journal of Sedimentary Petrology 61:624–26.

    Google Scholar 

  • Orlansky, R., 1968, Method for making slides of fine-grained unconsolidated sediment and ooze. Journal of Sedimentary Petrology 38:1378.

    Google Scholar 

  • Palmer, S. N., and M. E. Barton, 1986, Avoiding microfabric disruption during the impregnation of friable, uncemented sands with dyed epoxy. Journal of Sedimentary Petrology 56:556–7.

    Google Scholar 

  • Reed, F. S., and J. L. Mergner, 1953, Preparation of rock thin sections. American Mineralogist 38:1184–1203.

    Google Scholar 

  • Socci, A., 1980, A method for dry and semi-dry thin-sectioning of certain water-sensitive rocks. Journal of Sedimentary Petrology 50:621–2.

    Google Scholar 

  • Teague, T., 1989, An improved technique for polishing difficult geological materials using a colloidal silica suspension. Journal of Sedimentary Petrology 59:635.

    Google Scholar 

  • Tucker, M. (ed.), 1988, Techniques in Sedimentology. Blackwell Scientific Publications, Oxford, 394p.

    Google Scholar 

  • Waldo, A. W., and S. T. Yuster, 1922, Method of impregnating porous materials to facilitate pore studies. American Association of Petroleum Geologists Bulletin 21:259–67.

    Google Scholar 

  • Yanguas, J. E., and S. T. Paxton, 1986, A new technique for preparation of petrographic thin sections using ultraviolet-curing adhesive. Journal of Sedimentary Petrology 56:539–40.

    Google Scholar 

Microfossil Extraction

  • Barss, M. S., and G. L. Williams, 1973, Palynology and nannofossil processing techniques, Geological Survey of Canada Paper 73–26, pp. 1–25.

    Google Scholar 

  • Dettman, M. E., 1963, Upper Mesozoic microfloras from south-eastern Australia. Royal Society of Victoria Proceedings 77:11–2.

    Google Scholar 

  • Phipps, D., and G. Playford, 1984, Laboratory techniques for extraction of palynomorphs from sediments. Department of Geology, University of Queensland, Papers 11:1–23.

    Google Scholar 

  • Wolf, K. H., A. J. Easton, and S. Warne, 1967, Techniques of examining and analyzing carbonate skeletons, minerals and rocks. In G. Chilingar, H. J. Bissell, and R. W. Fairbridge (eds.), Carbonate Rocks, Developments in Sedimentology 9B, Elsevier, New York, pp. 253–341.

    Google Scholar 

Coal Sample Treatment

  • ASTM, 1987, Annual Book of ASTM Standards, vol. 05.05. Gaseous Fuels; Coal and Coke. American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  • International Committee for Coal Petrography Handbook, 1971, Centre Nationale de la Recherche Scientifique, Paris.

    Google Scholar 

  • Stach, E., M.-Th. Mackowsky, M. Teichmuller, R. Teichmuller, G. H. Taylor, and D. Chandra, 1982, Coal Petrology. Gebruder Borntraeger, Berlin.

    Google Scholar 

  • Ward, C. R. (ed.), 1984, Coal Geology and Coal Technology. Blackwell, Melbourne, 345p.

    Google Scholar 

Chemical Analysis Methodology

  • Bernas, B., 1968, A new method for decomposition and comprehensive analysis of silicates by atomic absorption spectrometry. Analytical Chemistry 42:1682–6.

    Google Scholar 

  • Bernhard, M., F. E. Brinckman, and P. J. Sadler (eds.), 1986, The Importance of Chemical “Speciation” in Environmental Processes. Life Sciences Research Report 33, Springer-Verlag, Berlin, 762p.

    Google Scholar 

  • Bray, R. M., and L. T. Kurtz, 1945, Determination of total organic and available forms of phosphorus in soils. Soil Science 59:39–45.

    Google Scholar 

  • Campbell, P. G. C., and A. Tessier, 1987, Current status of metal speciation studies. In J. W. Patterson and R. Pussino (eds.), Metal Speciation, Separation and Recovery. Lewis Publishers Inc., Chelsea, Mich., pp. 201–24.

    Google Scholar 

  • Chao, T. T., 1984, Use of partial dissolution techniques in geochemical exploration. Journal of Geochemical Exploration 20:101–35.

    Google Scholar 

  • Chester, R., and M. J. Hughes, 1967, A chemical technique for the separation of ferro-manganese minerals, carbonate minerals, and adsorbed trace elements from pelagic sediments. Chemical Geology 2:233–48.

    Google Scholar 

  • Cooper, B. S., and R. C. Harris, 1974, Heavy metals in organic phases of river and estuarine sediments. Marine Pollution Bulletin 5:24–6.

    Google Scholar 

  • Cremer, M., and J. Schlocker, 1976, Lithium borate decomposition of rocks, minerals and ores. American Mineralogist 61:318–21.

    Google Scholar 

  • Deurer, R., U. Förstner, and G. Schmoll, 1978, Selective chemical extraction of carbonate-associated metals from recent lacustrine sediments. Geochimica Cosmochimica Acta 42:425–7.

    Google Scholar 

  • Duff, S. J., G. W. Hay, R. K. Micklethwaite, and G. W. Vanloon, 1989, Distribution and classification of metal species in soil leachates. Science of the Total Environment 87/88:189–97.

    Google Scholar 

  • Engler, R. M., J. M. Brannon, J. Rose, and G. Bigham, 1977, A practical selective extraction procedure for sediment characterization. In T. F. Yen (ed.), Chemistry of Marine Sediments. Science Publishers, Ann Arbor, pp. 163–80.

    Google Scholar 

  • Fabbi, B. P., 1978, Geology. In H. K. Herglotz and L. S. Birks (eds.), X-ray Spectrometry. Marcel Dekker, New York, pp. 297–353.

    Google Scholar 

  • Förstner, U., 1989, Contaminated Sediments. Lecture Notes in Earth Science, No. 21. Springer-Verlag, Berlin. 157p.

    Google Scholar 

  • Förstner, U., and G. T. W. Wittmann, 1981, Metal Pollution in the Aquatic Environment. Springer-Verlag, Berlin, 486p.

    Google Scholar 

  • Gibbs, R. J., 1977, Transport phases of transition metals in the Amazon and Yukon rivers. Geological Society of America Bulletin 88:829–43.

    Google Scholar 

  • Gillman, G. P., and E. A. Sumpter, 1986, Modification to the compulsive exchange method for measuring exchange characteristics of soils. Australian Journal of Soil Research 24:61–6.

    Google Scholar 

  • Gupta, S. K., and K. Y. Chen, 1975, Partitioning of trace metals in selective chemical fractions of near-shore sediments. Environmental Letters 10:129–58.

    Google Scholar 

  • Harvey, P. K., and B. P. Atkin, 1982, Automated X-ray fluorescence analysis. In Sampling and Analysis for the Mining Industry. Institute of Mining and Metallurgy, London, pp. 17–26.

    Google Scholar 

  • Holmgren, G. G. S., 1967, A rapid citrate-dithionite extractable iron procedure. Soil Science Society of America Proceedings 31:210–1.

    Google Scholar 

  • Hutton, J. T., and S. M. Elliott, 1980, An accurate XRF method for the analysis of geochemical exploration samples for major and trace elements using one glass disc. Chemical Geology 29:1–11.

    Google Scholar 

  • Ingamells, C. O., 1970, Lithium metaborate flux in silicate analysis. Anales Chimica Acta 52:323–34.

    Google Scholar 

  • Jackson, M. L., 1958, Soil Chemical Analysis. Prentice Hall, Englewood Cliffs, N.J., 498p.

    Google Scholar 

  • Kersten, M., and U. Förstner, 1986, Chemical fractionation of heavy metals in anoxic estuarine and coastal sediments. Water Science and Technology 18:121–30.

    Google Scholar 

  • Khalid, R. A., R. P. Grambrell, and W. H. Patrick, 1981, Chemical availability of cadmium in Mississippi River sediment. Journal of Environmental Quality 10:523–8.

    Google Scholar 

  • Lee, R. F., and D. M. McConchie, 1982, Comprehensive major and trace element analysis of geological material by X-ray fluorescence using low dilution fusion. X-ray Spectrometry 11:55–63.

    Google Scholar 

  • Lindsay, W. L., and W. A. Norvell, 1978, Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42:421–8.

    Google Scholar 

  • Lord, C. J., 1982, A selective and precise method for pyrite determination in sedimentary materials. Journal of Sedimentary Petrology 52:664–6.

    Google Scholar 

  • Louma, S. N., 1990, Processes affecting metal concentrations in estuarine and coastal marine sediments. In R. W. Furness and P. S. Rainbow (eds.), Heavy Metals in the Marine Environment. C.R.C. Press, Boca Raton, Fla., pp. 51–65.

    Google Scholar 

  • McConchie, D. M., and V. J. Harriott, 1992, The partitioning of metals between tissue and skeletal parts of corals: Application in pollution monitoring. Proceedings of the International Coral Reef Symposium, Guam.

    Google Scholar 

  • Morris, R. C., and W. E. Ewers, 1978, A simple streak print technique for mapping mineral distributions in ores and other rocks. Economic Geology 73:562–6.

    Google Scholar 

  • Norrish, K., and J. T. Hutton, 1969, An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochimica Cosmochimica Acta 33:431–53.

    Google Scholar 

  • Rapin, R., and U. Förstner, 1983, Sequential leaching techniques for particulate metal speciation: The selectivity of various extractants. In Proceedings 4th International Conference on Heavy Metals in the Environment, Heidelberg, pp. 1074–7.

    Google Scholar 

  • Rapin, F., A. Tessier, P. G. C. Campbell, and R. Carigan, 1986, Potential artifacts in the determination of metal partitioning in sediments by a sequential extraction procedure. Environmental Science and Technology 20:826–40.

    Google Scholar 

  • Ruzyla, K., and D. I. Jezek, 1987, Staining method for recognition of pore space in thin and polished sections. Journal of Sedimentary Petrology 57:777–8.

    Google Scholar 

  • Tessier, A., P. G. C. Campbell, and M. Bisson, 1979, Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51:844–50.

    Google Scholar 

  • Tessier, A., P. G. C. Campbell, and M. Bisson, 1982, Particulate trace metal speciation in stream sediments and relationships with grain size: Implications for geochemical exploration. Journal of Geochemical Exploration 16:77–104.

    Google Scholar 

  • Thomas, I. L., and M. T. Haukka, 1978, XRF determination of trace and major elements using a single-fused disc. Chemical Geology 21:39–50.

    Google Scholar 

  • Van Eenbergen, A., and E. Bruninx, 1978, Losses of elements during sample decomposition in an acid-digestion bomb. Analytica Chimica Acta 98:405–6.

    Google Scholar 

  • Volkov, I. I., and L. S. Formina, 1974, Influence of organic material and processes of sulphide formation on distribution of some trace elements in deep-water sediments of Black Sea. American Association of Petroleum Geologists Memoir 20:456–76.

    Google Scholar 

  • Yanguas, J. E., and J. J. Dravis, 1985, Blue fluorescent dye technique for recognition of microporosity in sedimentary rocks. Journal of Sedimentary Petrology 55:600–2.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lewis, D.W., McConchie, D. (1994). Sample Treatment in the Laboratory. In: Analytical Sedimentology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2636-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2636-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6131-2

  • Online ISBN: 978-1-4615-2636-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics