Skip to main content

Sedimentary Carbonates

  • Chapter
Practical Sedimentology

Abstract

Despite the fact that they comprise a much smaller volume than detrital sediments, particularly in Holocene time, carbonate sediments have attracted much interest, only partly because of the economic importance of ancient limestones (e. g., as hydrocarbon reservoirs, sources of agricultural and industrial lime, building stone). They show a wide variety of characteristics and are mostly composed of the remains of ancient life forms, an aspect of considerable interest in itself; perhaps even more significantly, modern analogues occur in shallow, clear, warm waters and relatively easy (and comfortable) studies provide direct insights into depositional conditions of the past. In addition, because of the solubility of the carbonate minerals and their ready response to changing biological, chemical, and physical conditions, intriguing diagenetic changes in sedimentary carbonates are ubiquitous. In this book we only superficially touch on some of the major aspects of the deposits; a proportionately larger list of selected references is provided for those desiring further information (e. g., Sorby 1879; Chilingar, Bissel, and Fair-bridge 1967; Folk 1973; Wilson 1975; Bathurst 1975; Scholle, Bebout, and Moore 1983; Scoffin 1987; Morse and MacKenzie 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Bibliography

General

  • Bathurst, R. G. C., 1975, Carbonate Sediments and TheirDiagenesis, 2d ed. Developments in Sedimentology 12, Elsevier, Amsterdam, 658p.

    Google Scholar 

  • Berger, A., J. Imbrie, J. Hays, G. Kukla, and B. Saltzman (eds. ), 1984, Milankovitch and Climate: Understanding the Response to Astronomical Forcing, 2 vols. D. Reidel Publishing Co., Dordrecht, Holland, 895p.

    Google Scholar 

  • Chilingar, G. V., H. J. Bissell, and R. W. Fairbridge (eds. ), 1967, Carbonate Rocks, 2 vols. Developments in Sedimentology 9A/ B, Elsevier, Amsterdam, 471p, 413p.

    Google Scholar 

  • Choquette, P. W., and L. C. Pray, 1970, Geologic nomenclature and classification of porosity in sedimentary carbonates. American Association of Petroleum Geologists Bulletin 54:207–50.

    Google Scholar 

  • Cook, H. E., P. N. McDaniel, E. W. Mountjoy, and L. C. Pray, 1972, Allochthonous carbonate debris flows at Devonian bank (“reef”) margins, Alberta, Canada. Canadian Petroleum Geologists Bulletin 20:439–97.

    Google Scholar 

  • Dunham, R. J., 1962, Classification of carbonate rocks according to depositional texture. In W. E. Ham (ed. ), Classification of Carbonate Rocks. American Association of Petroleum Geologists Memoir 1, Tulsa, Okla., pp. 108–21.

    Google Scholar 

  • Embry, A. F., and E. J. Klovan, 1972, Absolute water depth limits of late Devonian paleoecological zones. Geologische Rundschau 61:672–86.

    Article  Google Scholar 

  • Fahraeus, L. E., R. M. Slatt, and G. S. Nowlan, 1974, Origin of carbonate pseudopellets. Journal of Sedimentary Petrology 44:27–9.

    Google Scholar 

  • Fischer, A. G., and D. J. Bottjer, 1991, Orbital forcing and sedimen-tary sequences. Journal of Sedimentary Petrology 61:1063–9.

    Google Scholar 

  • Folk, R. L., 1959, The practical petrographical classification of limestones. American Association of Petroleum Geologists Bulletin 43:1–38.

    Google Scholar 

  • Folk, R. L., 1962, Spectral subdivision of limestone types. In E. W. Ham (ed. ), Classification of Carbonate Rocks: A Symposium. American Association of Petroleum Geologists Memoir 1, Tulsa, Okla., pp. 62–84.

    Google Scholar 

  • Folk, R. L., 1973, Carbonate petrography in the post-Sorbian age. In R. N. Ginsburg (ed. ), Evolving Concepts in Sedimentology. Johns Hopkins University Press, Baltimore, pp. 118–58.

    Google Scholar 

  • Ham, E. W. (ed. ), 1962, Classification of Carbonate Rocks: A Symposium. American Association of Petroleum Geologists Memoir 1, Tulsa, Okla., 279p.

    Google Scholar 

  • Hiscott, R. N., and N. P. James, 1985, Carbonate debris flows, Cow Head Group, western Newfoundland. Journal of Sedimentary Petrology 55:735–45.

    Google Scholar 

  • Horowitz, A. S., and P. E. Potter, 1971, Introductory Petrography of Fossils. Springer-Verlag, New York, 302p.

    Book  Google Scholar 

  • Lees, A., and A. T. Buller, 1972, Modern temperate-water and warm-water shelf carbonate sediments contrasted. Marine Geology 13:M67—M73.

    Article  Google Scholar 

  • Lindholm, R. C., 1969, Carbonate petrology of the Onondaga lime-stone (Middle Devonian), New York: A case for calcisiltite. Journal of Sedimentary Petrology 39:260–75.

    Google Scholar 

  • Matthews, R. K., 1966, Genesis of lime mud in Southern British Honduras. Journal of Sedimentary Petrology 36:428–554.

    Google Scholar 

  • Perkins, R. D., and S. D. Halsey, 1971, Geologic significance of microboring fungi and algae in Carolina shelf sediments. Journal of Sedimentary Petrology 41:843–53.

    Google Scholar 

  • Reid, R. P., I. G. Maclntyre, and N. P. James, 1990, Internal precipitation of microcrystalline carbonate: A fundamental problem for sedimentologists. Sedimentary Geology 68:163–70.

    Article  Google Scholar 

  • Reijers, T. J. A., and K. J. Hsu (eds. ), 1986, Manual of Carbonate Sedimentology. Academic Press, New York, 302p.

    Google Scholar 

  • Scholle, P. A., 1978, A Colour Illustrated Guide to Carbonate Rock Constituents, Textures, Cements and Porosities. American Association of Petroleum Geologists Memoir 27, Tulsa, Okla., 241p.

    Google Scholar 

  • Scoffin, T. P., 1987, An Introduction to Carbonate Sediments and Rocks. Blackie & Son, New York, 274 p.

    Google Scholar 

  • Shinn, E. A., R. P. Steinen, B. H. Lidz, and P. K. Swart, 1989, Whitings, a sedimentologic dilemma. Journal of Sedimentary Petrology 59:147–61.

    Google Scholar 

  • Simone, L., 1981, Ooids: A review. Earth-Science Reviews 16:31955.

    Google Scholar 

  • Sorby, H. C., 1879, Structure and origin of limestones (anniversary address of the president). Proceedings of the Geological Society of London 35:56–95.

    Google Scholar 

  • Stieglitz, R. D., 1973, Carbonate needles: Additional organic sources. Geological Association of America Bulletin 84:927–30.

    Article  Google Scholar 

  • Stockman, K. W., R. N. Ginsburg, and E. A. Shinn, 1967, The production of lime mud by algae in south Florida. Journal of Sedimentary Petrology 37:633–48.

    Google Scholar 

  • Swinchatt, J. P., 1965, Significance of constituent composition, texture and skeletal breakdown in some recent carbonate sediments. Journal of Sedimentary Petrology 35:71–90.

    Google Scholar 

  • Wilson, J. L., 1975, Carbonate Facies in Geologic History. Springer-Verlag, New York, 471p.

    Book  Google Scholar 

  • Wright, V. P., 1992, A revised classification of limestones. Sedimentary Geology 76:177–85.

    Article  Google Scholar 

Mineralogy,Trace Elements,and Isotopes

  • Abell, P. I., 1985, Oxygen isotope ratios in modern African gastropod shells: A data base for paleoclimatology. Isotope Geoscience 58:183–93.

    Article  Google Scholar 

  • Arthur, M. A., T. F. Anderson, I. R. Kaplan, J. Veizer, and L. S. Land, 1983, Stable Isotopes in Sedimentary Geology. Short Course 10, Society of Economic Paleontologists and Mineralogists, Tulsa, Okla., 295p.

    Google Scholar 

  • Bowen, R., 1988, Isotopes in the Earth Sciences. Elsevier, Amsterdam.

    Book  Google Scholar 

  • Chave, K. E., 1962, Factors influencing the mineralogy of carbonate sediments. Limnology and Oceanography 7:218–23.

    Article  Google Scholar 

  • Fritz, P., and J. Ch. Fontes (eds. ), 1986, Handbook of Environmen- tal Isotope Geochemistry, vol. 2. Elsevier, Amsterdam, 557p.

    Google Scholar 

  • Goldsmith, J. R., D. L. Graf, J. Witters, and D. A. Northrop, 1962, Studies in the system CaCO3 MgCO3 FeCO3. Journal of Geology 70:659–88.

    Google Scholar 

  • Hoefs, J., 1987, Stable Isotope Geochemistry, 3d ed. Springer-Verlag, New York, 241p.

    Google Scholar 

  • Kahn, M. I., T. Oba, and T. -L. Ku, 1981, Paleotemperatures and the glacially induced changes in the oxygen-isotope composition of seawater during late Pleistocene and Holocene time in the Tanner Basin, California. Geology 9:485–90.

    Article  Google Scholar 

  • Kinsman, D. J. J., 1969, Interpretation of Sr(+2) concentrations in carbonate minerals and rocks. Journal of Sedimentary Petrology 39:486–508.

    Google Scholar 

  • Morse, J. W., and F. T. MacKenzie, 1990, Geochemistry of Sedimentary Carbonates. Developments in Sedimentology 48, Elsevier, New York, 707p.

    Google Scholar 

  • Savin, S. M., and H. W. Yeh, 1981, Stable isotopes in ocean sediments. In C. Emiliani (ed. ), The Sea, vol. 7, Wiley, New York, pp. 1521–54.

    Google Scholar 

Marine Environments

  • Ball, M. M., 1967, Carbonate sand bodies of Florida and the Bahamas. Journal of Sedimentary Petrology 37:556–91.

    Google Scholar 

  • Cloyd, K. C., R. V. Demicco, and R. J. Spencer, 1990, Tidal channel, levee, and crevasse-splay deposits from a Cambrian tidal channel system: A new mechanism to produce shallowing-upward sequences. Journal of Sedimentary Petrology 60:73–83.

    Google Scholar 

  • Cook, H. E., and P. Enos (eds. ), 1977, Deep-Water Carbonate Environments. Society for Sedimentary Geology Special Publication 25, Tulsa, Okla., 336p.

    Google Scholar 

  • Cook, H. E., A. C. Hine, and H. T. Mullins, 1983, Platform Margin and Deepwater Carbonates. Short Course 12, Society for Sedimentary Geology, Tulsa, Okla., 573p.

    Google Scholar 

  • Decima, A., J. A. McKenzie, and B. C. Schreiber, 1988, The origin of “evaporative” limestones: An example from the Messinian of Sicily (Italy). Journal of Sedimentary Petrology 58:256–72.

    Google Scholar 

  • Ekdale, A. A., and R. G. Bromley, 1984, Comparative ichnology of shelf-sea and deep-sea chalk. Journal of Paleontology 58:322–32.

    Google Scholar 

  • Eliuk, L. S., 1978, The Abenaki Formation, Nova Scotia Shelf, Canada—a depositional and diagenetic model for a Mesozoic carbonate platform. Canadian Petroleum Geology Bulletin 26:424–514.

    Google Scholar 

  • James, N. P., 1984a, Reefs. In R. G. Walker (ed. ), Facies Models, 2d ed. Geoscience Canada Reprint Series 1, Toronto, pp. 229–44.

    Google Scholar 

  • James, N. P., 1984b, Shallowing-upward sequences in carbonates. In R. G. Walker (ed. ), Facies Models, 2d ed. Geoscience Canada Reprint Series 1, Toronto, pp. 213–228.

    Google Scholar 

  • Jenkyns, H. C., 1986, Pelagic environments. In H. G. Reading (ed. ), Sedimentary Environments and Facies, 2d ed. Blackwell Scientific Publications, Oxford, pp. 343–97.

    Google Scholar 

  • Katz, A., 1971, Zoned dolomite crystals. Journal of Geology 79: 38–51.

    Article  Google Scholar 

  • Logan, B. W., G. R. Davies, J. F. Read, and D. E. Cebulski, 1970, Carbonate Sedimentation and Environments, Shark Bay, Western Australia. American Association of Petroleum Geologists Memoir 13, Tulsa, Okla., 223p.

    Google Scholar 

  • Maclntyre, I. G., 1970, Sediments off the West Coast of Barbados: A diversity of origins. Marine Geology 9:5–23.

    Article  Google Scholar 

  • Nelson, C. S., 1978, Temperate shelf carbonate sediments in theCenozoic of New Zealand. Sedimentology 25:737–71.

    Article  Google Scholar 

  • Nelson, C. S., 1988, An introductory perspective on non-tropical shelf carbonates. Sedimentary Geology 60:3–12.

    Article  Google Scholar 

  • Read, J. F., 1985, Carbonate platform facies models. American Association of Petroleum Geologists Bulletin 69:1–21.

    Google Scholar 

  • Scholle, P. J., D. G. Bebout, and C. H. Moore (eds. ), 1983, Carbonate Depositional Environments. American Association of Petroleum Geologists Memoir 33, Tulsa, Okla., 708p.

    Google Scholar 

  • Schwartz, H. -H., 1975, Sedimentary structures and facies analysis of shallow marine carbonates. Contributions to Sedimentology 3:1100.

    Google Scholar 

  • Strasser, A., 1988, Shallowing-upward sequences in Purbeckian 184 Sedimentary Carbonates pentidal carbonates (lowermost Cretaceous, Swiss and French Jura Mountains). Sedimentology 35:369–83.

    Article  Google Scholar 

  • Walker, J. C. G., 1983, Possible limits on the composition of the Archaean Ocean. Nature 302:518–20.

    Article  Google Scholar 

  • Wilson, J. L., 1974, Characteristics of carbonate-platform margins. American Association of Petroleum Geologists Bulletin 58:81024.

    Google Scholar 

  • Wright, V. P., 1984, Peritidal carbonate facies models: A review. Geological Journal 19:309–25.

    Article  Google Scholar 

Reefs

  • Braithwaite, C. J. R., 1973, Reefs: Just a problem of semantics? American Association of Petroleum Geologists Bulletin 57: 1100–16.

    Google Scholar 

  • Laporte, L. F. (ed. ), 1974, Reefs in Time and Space. Society for Sedimentary Geology Special Publication 18, Tulsa, Okla.

    Google Scholar 

  • Matthews, R. K., 1974, A process approach to diagenesis of reefs and reef associated limestones. In L. F. Laportee (ed. ), Reefs in Time and Space. Society for Sedimentary Geology Special Publication 18, Tulsa, Okla., pp. 234–56.

    Google Scholar 

  • Maxwell, W. G. H., and J. P. Swinchatt, 1970, Great Barrier Reef: Regional variation in a terrigenous-carbonate province. Geological Association of America Bulletin 81:691–724.

    Article  Google Scholar 

  • Playford, P. E., and D. C. Lowry, 1966, Devonian reef complexes of the Canning Basin, Western Australia. Geological Survey of Western Australia Bulletin 118:1–150.

    Google Scholar 

  • Rigby, J. K., and N. D. Newell (eds. ), 1971, Reef organisms through time. In Symposium Volume—Proceedings of the North American Paleontological Convention, Part J. Allen Press, Lawrence, Kansas.

    Google Scholar 

  • Stanley, G. D., Jr., and J. A. Fagerstrom, 1988, Ancient reef ecosystems: An introduction to the volume. Palaios 3:110–11.

    Article  Google Scholar 

Nonmarine Carbonates

  • Arakel, A. V., 1985, Vadose diagenesis and multiple calcrete soil profile development in Hutt Lagoon area, western Australia. Revue de Geologie Dynamique et de Geographie Physique 26:243–54.

    Google Scholar 

  • Arakel, A. V., 1986, Evolution of calcrete in palaeodrainages of the Lake Napperby area, Central Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 54:283–303.

    Article  Google Scholar 

  • Arakel, A. V., and D. McConchie, 1982, Classification and genesis of calcrete and gypsite lithofacies in paleodrainage systems of inland Australia and their relationship to carnotite mineralization. Journal of Sedimentary Petrology 52:1149–70.

    Google Scholar 

  • Freytet, P., 1973, Petrography and paleo-environment of continental carbonate deposits with particular reference to the Upper Cretaceous and Lower Eocene of Languedoc (southern France). Sedimentary Geology 10:25–60.

    Article  Google Scholar 

  • Goudie, A., 1972, The chemistry of world calcrete deposits. Journal of Geology 80:449–63.

    Article  Google Scholar 

  • Klappa, C. F., 1980, Rhizoliths in terrestrial carbonates: Classification, recognition, genesis and significance. Sedimentology 27:613–30.

    Article  Google Scholar 

  • Mann, A. W., and R. L. Deutscher, 1978, Hydrogeochemistry of calcrete-containing aquifer near Lake Way, Western Australia. Journal of Hydrology 38:357–77.

    Article  Google Scholar 

  • Mann, A. W., and R. C. Horwitz, 1979, Groundwater calcrete deposits in Australia: Some observations from Western Australia. Journal of the Geological Society of Australia 26:293303.

    Google Scholar 

  • Pedley, H. M., 1990, Classification and environmental models of cool freshwater tufa. Sedimentary Geology 68:143–54.

    Article  Google Scholar 

  • Semeniuk, V., and D. J. Searle, 1985, Distribution of calcrete in Holocene coastal sands in relationship to climate, southwestern Australia. Journal of Sedimentary Petrology 55:86–95.

    Google Scholar 

  • Williamson, C. R., and M. D. Picard, 1974, Petrology of carbonate rocks of the Green River Formation (Eocene). Journal of Sedimentary Petrology 44:738–59.

    Google Scholar 

  • Wright, V. P., N. H. Platt, and W. A. Wimbledon, 1988, Biogenic laminar calcretes: Evidence of calcified root-mat horizons in paleosols. Sedimentology 35:603–20.

    Article  Google Scholar 

Diagenesis

  • Alexandersson, E. T., 1979, Marine maceration of skeletal carbon-ates in the Skagerrak, North Sea. Sedimentology 26:845–52.

    Article  Google Scholar 

  • Bathurst, R. G. C., 1970, Problems of lithification in carbonate muds. Geologists Association Proceedings 81:429–40.

    Article  Google Scholar 

  • Beier, J. A., 1985, Diagenesis of Quaternary Bahamian beachrock: Petrographic and isotopic evidence. Journal of Sedimentary Petrology 55:755–61.

    Google Scholar 

  • Bromley, R. G., and A. A. Ekdale, 1987, Mass transport in European Cretaceous chalk: Fabric criteria for its recognition. Sedimentology 34:1079–92.

    Article  Google Scholar 

  • Dickson, J. A. D., 1985, Diagenesis of shallow-marine carbonates. In P. J. Brenchley and B. P. J. Williams (eds. ), Sedimentology, Recent Developments and Applied Aspects. Geological Society of London Special Publication 18, Blackwell Scientific Publications, Oxford, England, pp. 173–88.

    Google Scholar 

  • Dickson, J. A. D. 1993, Crystal growth diagrams as an aid to interpreting the fabrics of calcite aggregates. Journal of Sedimentary Petrology 63:1–17.

    Google Scholar 

  • Folk, R. L., 1965, Some aspects of recrystallization in ancient limestones. In L. C. Pray and R. C. Murray (eds. ), Dolomitization and Limestone Diagenesis. Society for Sedimentary Geology Special Publication 13, Tulsa, Okla., pp. 14–48.

    Google Scholar 

  • Friedman, G. M., 1975, The making and unmaking of limestones or the downs and ups of porosity. Journal of Sedimentary Petrology 45:379–98.

    Google Scholar 

  • Giles, M. R., and J. D. Marshall, 1986, Constraints on the development of secondary porosity in the subsurface: Re-evaluation of processes. Marine and Petroleum Geology 3:243–55.

    Article  Google Scholar 

  • Herbert, T. D. 1993, Differential compaction in lithified deep-sea sediments is not evidence for diagenetic unmixing Sedimentary Geology 84:115–22.

    Article  Google Scholar 

  • James, N. P., and P. W. Choquette (eds. ), 1988, Paleokarst. Springer-Verlag, New York.

    Google Scholar 

  • James, W. C., 1985, Early diagenesis, Atherton Formation (Quaternary): A guide for understanding early cement distribution and grain modifications in nonmarine deposits. Journal of Sedimentary Petrology 55:135–46.

    Google Scholar 

  • Kennedy, W. J., and R. E. Garrison, 1975, Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England. Sedimentology 22:311–86.

    Article  Google Scholar 

  • Land, L. S., 1970, Phreatic versus vadose meteoric diagenesis of limestones: Evidence from a fossil water table. Sedimentology 14:175–85.

    Article  Google Scholar 

  • Maliva, R. G., 1989, Displacive calcite syntaxial overgrowths in open marine limestones. Journal of Sedimentary Petrology 59:397–403.

    Google Scholar 

  • Moore, C. H., 1989, Carbonate Diagenesis and Porosity. Developments in Sedimentology 46, Elsevier, New York, 338p.

    Google Scholar 

  • Quinn, T. M., 1991, Meteoric diagenesis of Plio-Pleistocene limestones at Enewetak Atoll. Journal of Sedimentary Petrology 61:681–703.

    Google Scholar 

  • Reaves, C. M., 1986, Organic matter metabolizability and calcium carbonate dissolution in nearshore marine muds. Journal of Sedimentary Petrology 56:486–94.

    Google Scholar 

  • Ricken, W., 1987, The carbonate compaction law: A new tool. Sedimentology 34:571–84.

    Article  Google Scholar 

  • Simpson, J., 1985, Stylolite-controlled layering in an homogeneous limestone: Pseudo-bedding produced by burial diagenesis. Sedimentology 32:495–505.

    Article  Google Scholar 

  • Wetzel, A., 1989, Influence of heat flow on ooze/chalk cementation: Quantification from consolidation parameters in DSDP sites 504 and 505 sediments. Journal of Sedimentary Petrology 59:539–47.

    Google Scholar 

Dolomite

  • Alderman, A. R., and H. C. Skinner, 1957, Dolomite sedimentation in the south-east of Australia and aspects of carbonate sedimentation. American Journal of Science 255:561–7.

    Article  Google Scholar 

  • Amthor, J. E., and G. M. Friedman, 1991, Dolomite-rock textures and secondary porosity development in Ellenburger Group carbonates (Lower Ordovician), west Texas and southeastern New Mexico. Sedimentology 38:343–62.

    Article  Google Scholar 

  • Badiozamani, K., 1973, The Dorag dolomitization model—application to the Middle Ordovician of Wisconsin. Journal of Sedimentary Petrology 43:965–84.

    Google Scholar 

  • Baker, P. A., and M. Kastner, 1981, Constraints on the formation of sedimentary dolomite. Science 213:214–16.

    Article  Google Scholar 

  • Folk, R. L., and L. S. Land, 1975, Mg/Ca ratio and salinity: Two controls over crystallization of dolomite. American Association of Petroleum Geologists Bulletin 59:60–8.

    Google Scholar 

  • Folk, R. L., and A. Siedlecka, 1974, The schizohaline environment: Its sedimentary and diagenetic fabrics as exemplified by late Paleozoic rocks of Bear Island, Svalbard. Sedimentary Geology 11:1–15.

    Article  Google Scholar 

  • Gaines, A. M., 1977, Protodolomite redefined. Journal of Sedimentary Petrology 47:543–6.

    Google Scholar 

  • Given, R. K., and B. H. Wilkinson, 1987. Dolomite abundance and stratigraphie age: Constraints on rates and mechanisms of Phanerozoic dolostone formation. Journal of Sedimentary Petrology 57:1068–1078. (Also see discussion by D. H. Zenger, and reply, Journal of Sedimentary Petrology 59:162–5.)

    Google Scholar 

  • Hardie, L. A., 1987, Dolomitization: A critical view of some current views. Journal of Sedimentary Petrology 57:166–83.

    Google Scholar 

  • Humphrey, J. D., and T. M. Quinn, 1989, Coastal mixing zone dolomite, forward modeling, and massive dolomitization of platform-margin carbonates. Journal of Sedimentary Petrology 59:438–54.

    Google Scholar 

  • James, N. P., and Y. Bone, 1991, Origin of a cool-water, OligoMiocene deep shelf limestone, Eucla Platform, southern Australia. Sedimentology 38:323–42.

    Article  Google Scholar 

  • Kocurko, M. J., 1979, Dolomitization by spray-zone brine seepage, San Andres, Colombia. Journal of Sedimentary Petrology 49:209–14.

    Google Scholar 

  • Land, L. S., 1985, The origin of massice dolomite, Journal of Geological Education 33:112–25.

    Google Scholar 

  • Lasemi,Z. ; M. R. Boardman, and P. A. Sandberg, 1989, Cement origin of supratidal dolomite, Andros Island, Bahamas. Journal of Sedimentary Petrology 59:249–57.

    Google Scholar 

  • Lumsden, D. N., 1988, Characteristics of deep-marine dolomite. Journal of Sedimentary Petrology 58:1023–31. (See also 1989 discussion by G. M. Friedman, and reply, Journal of Sedimentary Petrology 59:879–81. )

    Google Scholar 

  • Machel, H. -G., and E. W. Mountjoy, 1986, Chemistry and environments of dolomitization—a reappraisal. Earth-Science Reviews 23:175–222.

    Article  Google Scholar 

  • Mazzullo, S. J., A. M. Reid, and J. M. Gregg, 1987, Dolomitization of Holocene Mg-calcite supratidal deposits, Ambergris Cay, Belize. Geological Society of America Bulletin 98:224–31.

    Article  Google Scholar 

  • Shinn, E. A., R. N. Ginsburg, and R. M. Lloyd, 1965, Recent supratidal dolomite from Andros Island, Bahamas. In L. C. Pray and R. C. Murray (eds. ), Society for Sedimentary Geology Special Publication 13, Tulsa, Okla., pp. 112–23.

    Google Scholar 

  • Sibley, D. F., and J. M. Gregg, 1987, Classification of dolomite rock textures. Journal of Sedimentary Petrology 57:967–75.

    Google Scholar 

  • Tucker, M. E., 1982, Precambrian dolomites: Petrographic and isotopic evidence that they differ from Phanerozoic dolomites. Geology 10:7–12.

    Article  Google Scholar 

  • Warren, J. K., 1990, Sedimentology and mineralogy of dolomitic Coorong lakes, South Australia. Journal of Sedimentary Petrology 60:843–58.

    Google Scholar 

  • Zenger, D. H., 1972, Significance of supratidal dolomitization in the geologic record. Geological Association of America Bulletin 83:1–12.

    Article  Google Scholar 

  • Zenger, D. H., J. B. Dunham, and R. L. Ethington (eds. ), 1980, Concepts and Models of Dolomitization. Society for Sedimentary Geology Special Publication 28, Tulsa, Okla., 320p.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lewis, D.W., McConchie, D. (1994). Sedimentary Carbonates. In: Practical Sedimentology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2634-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2634-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6130-5

  • Online ISBN: 978-1-4615-2634-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics