Skip to main content

Processes in Sedimentation

  • Chapter
Practical Sedimentology

Abstract

An appreciation of the chemical, biological, and physical processes acting at or near the surface of the earth is integral to understanding and interpreting many characteristics of sediments, in particular sedimentary structure (Chapter 4), texture (Chapter 5), and composition, both with respect to the alteration of detrital minerals and with regard to the origin of nondetrital sediments (Chapters 7, 8, and 9). These processes are very closely interrelated and influence the history of most sediments. Interactions are particularly important at boundaries such as the sediment/water interface and the sediment/air interface, where gradients in physical, chemical, and biological processes are greatest (Santschi et al. 1990). For clarity, the different types of processes are treated separately here, but it is important to remember that although their relative influence may differ spatially and temporally, they al-most always act in unison.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Chemical Processes

  • Anderson, M., and A. Rubin (eds. ), 1981, Adsorption of Inorganics at the Solid–Liquid Interface. Ann Arbor Science Publications, Ann Arbor, Mich., 357p.

    Google Scholar 

  • Berner, R. A., 1971, Principles of Chemical Sedimentology. McGraw-Hill, New York, 240p.

    Google Scholar 

  • Brookins, D. G., 1988, Eh pH Diagrams for Geochemistry. Springer-Verlag, New York, 176p.

    Google Scholar 

  • Dean, W. E., and B. C. Schreiber, 1978, Marine Evaporites. Short Course 4, Society for Sedimentary Geology, Tulsa, Okla., 188p.

    Google Scholar 

  • Dreyer, J. I., 1988, The Geochemistry of Natural Waters, 2d ed. Prentice-Hall, Englewood Cliffs, N. J., 437p.

    Google Scholar 

  • Förstner, U., and G. T. W. Wittmann, 1981, Metal Pollution in the Aquatic Environment. Springer-Verlag, New York.

    Google Scholar 

  • Garrels, R. M., and C. L. Christ, 1965, Solution, Minerals and Equilibria. Harper & Row, New York, 450p.

    Google Scholar 

  • Gibbs, R. J., D. M. Tshudy, L. Konwar, and J. M. Martin, 1989, Coagulation and transport of sediments in the Gironde Estuary. Sedimentology 36:987–1000.

    Google Scholar 

  • Grim, R. E., 1968, Clay Mineralogy. McGraw-Hill, New York, 596p.

    Google Scholar 

  • Harder, H., and W. Flemhig, 1970, Quarzsynthese bei tiefen temperaturen. Geochimica et Cosmochimica Acta 34:295–305.

    Google Scholar 

  • Holland, H. D., 1972, The geological history of sea water—an at-tempt to solve the problem. Geochimica et Cosmochimica Acta 36:637–651.

    Google Scholar 

  • Holland, H. D., 1978, The Chemistry of the Atmosphere and Oceans. Wiley-Interscience, New York, 351p.

    Google Scholar 

  • Holland, H. D., 1984, The Chemical Evolution of the Atmosphere and Oceans. Princeton University Press, Princeton, N. J., 582p.

    Google Scholar 

  • Iler, R. K., 1979, The Chemistry of Silica. Wiley-Interscience, NewYork, 866p.

    Google Scholar 

  • Kabata-Pendias, A., and H. Pendias, 1992, Trace Elements in Soils and Plants, 2d ed. CRC Press, Boca Raton, Fla., 365p.

    Google Scholar 

  • Krauskopf, K. B., 1979, Introduction to Geochemistry, 2d ed. McGraw-Hill, New York, 617p.

    Google Scholar 

  • Maynard, J. B., 1983, Geochemistry of Sedimentary Ore Deposits. Springer-Verlag, New York, 305p.

    Google Scholar 

  • Mueller, R. F., and S. K. Saxena, 1977, Chemical Petrology. Springer-Verlag, New York.

    Google Scholar 

  • Rosier, H. J., and H. Lange, 1972, Geochemical Tables. Elsevier, Amsterdam

    Google Scholar 

  • Salop, J. L., 1983, Geological Evolution of the Earth During the Precambrian. Springer-Verlag, Berlin, 459p.

    Google Scholar 

  • Santschi, P., P. Höhener, G. Benoit, and M. Buchholtz-ten Brink, 1990, Chemical processes at the sediment-water interface. Marine Chemistry 30:269–315.

    Google Scholar 

  • Stevens, R. E., and M. K. Carron, 1948, Simple field test for distinguishing minerals by abrasion pH. American Mineralogist 33:31–50.

    Google Scholar 

  • Stumm, W., and J. J. Morgan, 1981, Aquatic Chemistry, 2d ed. Wiley-Interscience, New York, 780p.

    Google Scholar 

  • Walker, J. C. G., 1983, Possible limits on the composition of the Archaean Ocean. Nature 302:518–20.

    Google Scholar 

  • Yariv, S., and H. Cross, 1979, Geochemistry of Colloid Systems for Earth Scientists. Springer-Verlag, Berlin.

    Google Scholar 

Physical Processes

  • Aigner, T., 1985, Storm Depositional Systems. Lecture Notes in Earth Sciences 3. Springer-Verlag, New York, 174p.

    Google Scholar 

  • Allen, J. R. L., 1985, Principles of Physical Sedimentology. George Allen & Unwin, London, 272p.

    Google Scholar 

  • Amos, C. L., and D. C. Mosher, 1985, Erosion and deposition of fine-grained sediments from the Bay of Fundy. Sedimentology 32:815–32.

    Google Scholar 

  • Anderson, R. S., and B. Hallet, 1986, Sediment transport by wind: Toward a general model. Geological Association of America Bulletin 97:523–35.

    Google Scholar 

  • Bagnold, R. A., 1968, Deposition in the process of hydraulic transport. Sedimentology 10:45–56.

    Google Scholar 

  • Baker, V. R., and D. F. Ritter, 1975, Competence of rivers to transport coarse bedload material. Geological Society of America Bulletin 86:975–8.

    Google Scholar 

  • Betzer, P. R., P. L. Richardson, and H. B. Zimmerman, 1974, Bottom currents, nepheloid layers and sedimentary features under the Gulf Stream near Cape Hatteras. Marine Geology 16:21–9.

    Google Scholar 

  • Brookfield, M. E., and T. S. Ahlbrandt, 1983, Eolian Sediments and Processes. Developments in Sedimentology 38. Elsevier Scientific Publications, New York, 660p.

    Google Scholar 

  • Clifton, H. E. (ed. ), 1988, Sedimentologic Consequences of Convulsive Geologic Events. Geological Society of America Special Paper 229, New York, 157p.

    Google Scholar 

  • Cook, D. O., 1970, The occurrence and geologic work of rip currents off southern California. Marine Geology 9:173–86.

    Google Scholar 

  • Dott, R. H., Jr., 1983, Episodic sedimentation—how normal is average? How rare is rare? Does it matter? Journal of Sedimentary Petrology 51:5–23.

    Google Scholar 

  • Drake, D. E., and D. S. Gorsline, 1973, Distribution and transport of suspended particulate matter in Hueneme, Redondo, Newport and La Jolla Submarine Canyons, California. Geological Society of America Bulletin 84:3949–68.

    Google Scholar 

  • Dyer, K. R., 1985, Coastal and Estuarine Sediment Dynamics. Wiley-Interscience, New York, 342p.

    Google Scholar 

  • Einsele, G., W. Ricken, and A. Seilacher (eds. ), 1991, Cyclic and Event Stratification. Springer-Verlag, Berlin, 1040p.

    Google Scholar 

  • Fangers, J. C., and D. A. V. Stow, 1993, Bottom-current-controlled sedimentation—A synthesis of the contourite problem. Sedimentary Geology 76:177–185.

    Google Scholar 

  • Folk, R. L., 1971, Longitudinal dunes of the northwestern edge of the Simpson Desert, Northern Territory, Australia. 1. Geomorphology and grain size relationships. Sedimentology 16:5–54.

    Google Scholar 

  • Fryberger, S. G., A. M. Al-Sari, T. J. Clisham, S. A. R Rizvi, and K. G. Al-Hinai, 1984, Wind sedimentation in the Jafurah sand sea, Saudi Arabia. Sedimentology 31:413–32.

    Google Scholar 

  • Gorsline, D. S., 1985, Some thoughts on fine-grained sediment transport and deposition. Sedimentary Geology 41:113–30.

    Google Scholar 

  • Gretener, P. E., 1967, Significance of the rare event in geology. American Association of Petroleum Geology Bulletin 51:2197–206.

    Google Scholar 

  • Heezen, B., and C. Hollister, 1964, Deep-sea current evidence from abyssal sediments. Marine Geology 1:141–74.

    Google Scholar 

  • Hsu, K. J., 1983, Actualistic catastrophism; address of the retiring president of the International Association of Sedimentologists. Sedimentology 30:3–9.

    Google Scholar 

  • Karl, H. A., D. A. Cacchione, and P. R. Carlson, 1986, Internal-wave currents as a mechanism to account for large sand waves in Navarinsky Canyon head, Bering Sea. Journal of Sedimentary Petrology 56:706–14.

    Google Scholar 

  • Komar, P. D., and C. Wang, 1984, Processes of selective grain transport and the formation of placers on beaches. Journal of Geology 92:637–55.

    Google Scholar 

  • Langford, R. P., 1989, Fluvial-aeolian interactions: Part I, modem systems. Sedimentology 36:1023–36.

    Google Scholar 

  • Langford, R. P., and M. A. Chan, 1989, Fluvial-aeolian interac-tions: Part II, ancient systems. Sedimentology 36:1037–51.

    Google Scholar 

  • Leopold, L. B., M. G. Wolman, and J. P. Miller, 1964, Fluvial Processes in Geomorphology. W. H. Freeman & Co., San Francisco.

    Google Scholar 

  • McCave, I. N., 1971, Wave effectiveness at the sea bed and its relationship to bed-forms and deposition of mud. Journal of Sedimentary Petrology 41:89–96.

    Google Scholar 

  • Middleton, G. V., (ed. ), 1965, Primary Sedimentary Structures and Their Hydrodynamic Interpretation. Society for Sedimentary Geology Special Publication 12, Tulsa, Okla., 265p.

    Google Scholar 

  • Middleton, G. V., 1976, Hydraulic interpretation of sand size distributions. Journal of Geology 84:405–26.

    Google Scholar 

  • Middleton, G. V., and J. B. Southard, 1978/1984, Mechanics of Sediment Movement, 1st & 2d eds. Short Course 3, Society for Sedimentary Geology, Tulsa, Okla.

    Google Scholar 

  • Moss, A. J., 1972, Bed-load sediments. Sedimentology 18:159–219.

    Google Scholar 

  • Moss, A. J., P. H. Walker, and J. Hutka, 1980, Movement of loose,sandy detritus by shallow water flows: An experimental study. Sedimentary Geology 25:43–66.

    Google Scholar 

  • Nairn, A. E. M., 1965, Uniformitarianism and environment. Palaeogeography, Palaeoclimatology, Palaeoecology 1:5–11.

    Google Scholar 

  • Pettijohn, F. J., 1975, Sedimentary Rocks, 3d ed. Harper & Row,New York, 628p.

    Google Scholar 

  • Pierson, T. C., and J. E. Costa, 1984, A rheological classification of subaerial sediment-water flows (abstract). Geological Society of America Abstracts with Programs 16:623.

    Google Scholar 

  • Rust, B., and G. C. Nanson, 1989, Bedload transport of mud as pedogenetic aggregates in modem and ancient rivers. Sedimentology 36:291–306.

    Google Scholar 

  • Stanley, D. J., and D. J. P. Swift (eds. ), 1976, Marine Sediment Transport and Environmental Management. John Wiley & Sons, New York, 602p.

    Google Scholar 

  • Sternberg, R. W., 1971, Measurements of incipient motion of sediment particles in the marine environment. Marine Geology 10:113–20.

    Google Scholar 

  • Stow, D. A. V., and J. P. B. Lovell, 1979, Contourites: Their recognition in modem and ancient sediments. Earth-Science Reviews 14:251–91.

    Google Scholar 

  • Terwindt, J. H. J., H. N. C. Breusers, and J. N. Svasek, 1968, Ex-perimental investigation on the erosion-sensitivity of a sand-clay lamination. Sedimentology 11:105–14.

    Google Scholar 

  • Tsutsui, B., J. F. Campbell, and W. T. Coulbourn,1987, Storm-generated, episodic sediment movements off Kahe Point, Oahu, Hawaii. Marine Geology 76:281–99.

    Google Scholar 

Sediment Gravity Transport

  • Andressen, A., and L. Bjerrum, 1967, Slides in subaqueous slopes in loose sand and silt. In A. F. Richards (ed. ), Marine Geotechnique, University of Illinois Press, Urbana, pp. 221–39.

    Google Scholar 

  • Booth, J. S., D. A. Sangrey, and J. K. Fugate, 1985, A nomogram for interpreting slope stability of fine-grained deposits in modem and ancient marine environments. Journal of Sedimentary Pe-trology 55:29–36.

    Google Scholar 

  • Boswell, P. G. H., 1948, The thixotropy of certain sedimentary rocks. Science Progress 36:412–22.

    Google Scholar 

  • Bouma, A. H., 1962, Sedimentology of Some Flysch Deposits. Elsevier, Amsterdam, 168p.

    Google Scholar 

  • Carter, R. M., 1975, A discussion and classification of subaqueous mass-transport with particular application to grain flow, slurry flow and fluxoturbidites. Earth-Science Reviews 11:145–77.

    Google Scholar 

  • Clarke, J. E. H., A. N. Shor, D. J. W. Piper, and L. A. Mayer, 1990, Large-scale current-induced erosion and deposition in the path of the 1929 Grand Banks turbidity current. Sedimentology 37:613–29.

    Google Scholar 

  • Crowell, J. C., 1957, The origin of pebbly mudstones. Geological Society of America Bulletin 68:993–1009.

    Google Scholar 

  • Enos, P., 1977, Flow regimes in debris flows. Sedimentology 24:133–42.

    Google Scholar 

  • Fisher, R. V., 1971, Features of coarse-grained, high-concentration fluids and their deposits. Journal of Sedimentary Petrology 41:916–27.

    Google Scholar 

  • Gould, H. R.,1951, Some quantitative aspects of Lake Mead turbidity currents. In Turbidity Currents and the Transportation of Coarse Sediments to Deep Water. Society of Sedimentary Geology Special Publication 2, Tulsa, Okla., pp. 34–52.

    Google Scholar 

  • Hampton, M. A., 1975, Competence of fine-grained debris flows. Journal of Sedimentary Petrology 45:834–44.

    Google Scholar 

  • Harms, J. C., 1974, Bushy Canyon Formation, Texas: A deep-water density current deposit. Geological Society of America Bulletin 85:1763–84.

    Google Scholar 

  • Hendry, H. E., 1973, Sedimentation of deep water conglomerates in lower Ordovician rocks of Quebec—composite bedding produced by progressive liquefaction of sediment. Journal of Sedimentary Petrology 43:125–36.

    Google Scholar 

  • Hsu, K. J., 1975, Catastrophic debris streams (sturzstroms) generated by rockfalls. Geological Society of America Bulletin 86:129–40.

    Google Scholar 

  • Johnson, A. M., 1970, Physical Processes in Geology. Freeman Cooper, San Francisco, 577p.

    Google Scholar 

  • Keefer, D. K., 1984, Landslides caused by earthquakes. Geological Society of America Bulletin 95:406–21.

    Google Scholar 

  • Kerr, P. F., R. A. Stroud, and I. M. Drew, 1971, Clay mobility in landslides, Ventura, California. American Association of Petroleum Geologists Bulletin 55:267–91.

    Google Scholar 

  • Komar, P. D., 1985, The hydraulic interpretation of turbidites from their grain sizes and sedimentary structures. Sedimentology 32:395–408.

    Google Scholar 

  • Kuenen, Ph. H., 1967, Emplacement of Fysch-type sand beds. Sedimentology 9:203–43.

    Google Scholar 

  • Lewis, D. W., 1976, Subaqueous debris flows of early Pleistocene age at Motunau, North Canterbury, New Zealand. New Zealand Journal of Geology and Geophysics 19:535–67.

    Google Scholar 

  • Lewis, D. W., 1980, Storm-generated graded beds and debris flow deposits with Ophiomorpha in a shallow offshore Oligocene sequence at Nelson, South Island, New Zealand. New Zealand Journal of Geology and Geophysics 23:353–69.

    Google Scholar 

  • Lewis, D. W., 1982, Channels across continental shelves: Corequisites of canyon-fan systems and potential petroleum conduits. New Zealand Journal of Geology and Geophysics 25:209–55.

    Google Scholar 

  • Lewis, D. W., M. G. Laird, and R. D. Powell, 1980, Debris flow deposits of early Miocene age, Deadman Stream, Marlborough, New Zealand. New Zealand Journal of Geology and Geophysics 27:83–118.

    Google Scholar 

  • Lewis, K. B., 1971, Slumping on a continental slope inclined at 1°-4°. Sedimentology 16:97–110.

    Google Scholar 

  • Lowe, D. R., 1976, Subaqueous liquified and fluidized sediment flows and their deposits. Sedimentology 23:285–308.

    Google Scholar 

  • Lowe, D. R., 1979, Sediment gravity flows: Their classification and some problems of its application to natural flows and deposits. In L. J. Doyle and O. H. Pilkey (eds. ), Geology of Continental Slopes. Society of Sedimentary Geology Special Publication 27, Tulsa, Okla., pp. 75–82.

    Google Scholar 

  • Lowe, D. R., 1982, Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology 52:279–97.

    Google Scholar 

  • Middleton, G. V., 1967, Experiments on density and turbidity currents, III: Deposition of sediments. Canadian Journal of Earth Science 4:475–506.

    Google Scholar 

  • Middleton, G. V., and A. H. Bouma (eds. ), 1973, Turbidites and Deep-Water Sedimentation. Short Course Lecture Notes, Society for Sedimentary Geology, Pacific Section, Los Angeles, Calif., 157p.

    Google Scholar 

  • Middleton, G. V., and M. A. Hampton, 1973, Sediment gravity flows—mechanics of flow and deposition. In. G. V. Middleton and A. H. Bouna (eds. ), Turbidites and Deep-Water Sedimentation. Short Course Lecture Notes, Society for Sedimentary Geology, Pacific Section, Los Angeles, Calif., pp. 1–38.

    Google Scholar 

  • Middleton, G. V., and M. A. Hampton, 1976, Subaqueous sediment transport and deposition by sediment gravity flows. In D. J. Stanley and D. J. P. Swift (eds. ), Marine Sediment Transport and Environmental Management. Wiley, New York, pp. 197–218.

    Google Scholar 

  • Morgenstern, N., 1967, Submarine slumping and the initiation of turbidity currents. In A. F. Richards (ed. ), Marine Geotechnique.University of Illinois Press, Urbana, pp. 189–220.

    Google Scholar 

  • Nardin, T. R., F. J. Hein, D. S. Gorsline, and B. D. Edwards, 1979, A review of mass-movement processes, sediment and acoustic characteristics, and contrasts in slope and base-of-slope systems versus canyon-cum-basin floor systems. In L. J. Doyle and O. H. Pilkey, Jr. (eds. ), Geology of Continental Slopes. Society of Sedimentary Geology Special Publication 27, Tulsa, Okla., pp. 61–73.

    Google Scholar 

  • Nelson, C. H., 1982, Modern shallow-water graded sand layers from storm surges, Bering Shelf: A mimic of Bouma sequences and turbidite systems. Journal of Sedimentary Petrology 52:537–45.

    Google Scholar 

  • Nemec, W., 1990, Aspects of sediment movement on steep delta slopes. In A. Colella and D. B. Prior (eds. ), Coarse-Grained Deltas. International Association of Sedimentologists Special Publication 10, Blackwell Scientific Publications, Oxford, pp. 29–73.

    Google Scholar 

  • Nemec, W., and R. J. Steel, 1984, Alluvial and coastal conglom-erates: Their significant features and some comments on gravelly mass-flow deposits. In E. H. Koster and R. J. Steel (eds. ), Sedimentology of Gravels and Conglomerates. Cana-dian Society of Petroleum Geologists Memoir 10, Calgary, Canada, pp. 1–31.

    Google Scholar 

  • Nemec, W., and R. J. Steel, (eds. ), 1988, Fan Deltas: Sedimentology and Tectonic Settings. Blackie & Son, Ltd., Glasgow, 464p.

    Google Scholar 

  • Normark, W. R., 1989, Observed parameters for turbidity-current flow in channels, Reserve Fan, Lake Superior. Journal of Sedimentary Petrology 59:423–31.

    Google Scholar 

  • Pierson, T. C., 1981, Dominant particle support mechanisms in debris flows at Mt. Thomas, New Zealand, and implications for flow mobility. Sedimentology 28:49–60.

    Google Scholar 

  • Piper, D. J. W., and W. R. Normark, 1983, Turbidite depositional patterns and flow characteristics, Navy Submarine Fan, California borderlands. Sedimentology 30:681–94.

    Google Scholar 

  • Porebski, S. J., D. Meischner, and K. Gorlich, 1991, Quaternary mud turbidites from the South Shetland Trench (West Antarctica): Recognition and implications for turbidite facies modelling. Sedimentology 38:691–716.

    Google Scholar 

  • Postma, G., 1986, Classification for sediment gravity flow deposits based on flow conditions during sedimentation. Geology 14:291–4.

    Google Scholar 

  • Rahn, P. H., 1986, Engineering Geology: An Environmental Approach. Elsevier, Amsterdam.

    Google Scholar 

  • Sallenger, A. H., Jr., 1979, Inverse grading and hydraulic equivalence in grain-flow deposits. Journal of Sedimentary Petrology 49:553–62.

    Google Scholar 

  • Saxov, S., and J. K. Nieuwenhuis (eds. ), 1982, Marine Slides and Other Mass Movements. Plenum Press, New York, 353p.

    Google Scholar 

  • Scheidegger, A. E., 1984, A review of recent work on mass movements on slopes and on rock falls. Earth-Science Reviews 21:225–49.

    Google Scholar 

  • Schwab, W. C., and H. J. Less, 1988, Causes of two slope-failure types in continental-shelf sediment, northeastern Gulf of Alaska. Journal of Sedimentary Petrology 58:1–11.

    Google Scholar 

  • Slaczka, A., and S. Thompson, III, 1981, A revision of the fluxoturbidite concept based on type examples in the Polish Carpathian flysch. Annales Societatis Geologorum Poloniae 51:3–44.

    Google Scholar 

  • Temple, P. G., 1968, Mechanism of large-scale gravity sliding in the Greek Peloponnesos. Geological Society of America Bulletin 79:687–700.

    Google Scholar 

  • van der Lingen, G. J., 1969, The turbidite problem. New Zealand Journal of Geology and Geophysics 12:7–50.

    Google Scholar 

  • Voigt, I. B. (ed. ), 1978, Rock Slides and Avalanches, 2 vols. Elsevier, Amsterdam.

    Google Scholar 

  • Walker, R. G., 1973, Mopping-up the turbidite mess. In R. N. Ginsburg (ed. ), Evolving Concepts in Sedimentology. Johns Hopkins University Press, Baltimore, pp. 1–37.

    Google Scholar 

  • Zeng, J., D. R. Lowe, D. B. Prior, W. J. Wiseman, Jr., and B. D. Bornhold, 1991, Flow properties of turbidity currents in Bute Inlet, British Columbia. Sedimentology 38:975–96.

    Google Scholar 

Diagenesis

  • Boles, J. R., and S. G. Franks, 1979, Clay diagenesis in Wilcox sandstones of southwest Texas: Implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Petrology 49:55–70.

    Google Scholar 

  • Bredehoeft, J. D., and B. B. Hanshaw, 1968, On the maintenance of anomalous fluid pressures: I, Tidal sedimentary sequences; II, Source layer at depth. Geological Society of America Bulletin 79:1097–106; 1107–22.

    Google Scholar 

  • de Segonzac, G. D., 1968, The birth and development of the concept of diagenesis (1866–1966). Earth-Science Reviews 4:153–207.

    Google Scholar 

  • Faas, R. W., and C. A. Nittrouer, 1976, Post-depositional facies development in the fine-grained sediments of the Wilkinson Basin, Gulf of Maine. Journal of Sedimentary Petrology 46:337–44.

    Google Scholar 

  • Hayes, J. B., 1979, Sandstone diagenesis—the Hole truth. In P. A. Scholle and P. R. Schluger, (eds. ), Aspects of Diagenesis. Society for Sedimentary Geology Special Publication 26, Tulsa, Okla., pp. 127–40.

    Google Scholar 

  • Larsen, G., and G. V. Chilingar (eds. ), 1978, Diagenesis in Sediments and Sedimentary Rocks. Developments in Sedimentology 25A, Elsevier, Amsterdam, 579p.

    Google Scholar 

  • Lee, J. H., J. H. Ahn, and D. R. Peacor, 1985, Textures in layered silicates: Progressive changes through diagenesis and low-temperature metamorphism. Journal of Sedimentary Petrology 55:532–40.

    Google Scholar 

  • McCall, P. L., and M. J. S. Tevesz, 1982, Animal—Sediment Relations: The Biogenic Alteration of Sediments. Plenum Press, New York, 336p.

    Google Scholar 

  • McDonald, D. A., and R. C. Surdam (eds. ), 1984, Clastic Diagenesis. American Association of Petroleum Geologists Memoir 37, Tulsa, Okla., 434p.

    Google Scholar 

  • Marshall, J. D. (ed. ), 1987, Diagenesis of Sedimentary Sequences. Geological Society Special Publication 36, Blackwell Scientific Publications, Oxford, 360p.

    Google Scholar 

  • Maynard, J. B., 1983, Geochemistry of Sedimentary Ore Deposits. Springer-Verlag, New York, 305p.

    Google Scholar 

  • Milliken, K. L., E. F. McBride, and L. S. Land, 1989, Numerical assessment of dissolution versus replacement in the subsurface destruction of detrital feldspars, Oligocene Frio Formation, South Texas. Journal of Sedimentary Petrology 59:740–57.

    Google Scholar 

  • Packham, G. H., and K. A. W. Crook, 1960, The principle of diagenetic facies and some of its implications. Journal of Geology 68:392–407.

    Google Scholar 

  • Parker, A., and B. W. Sellwood (eds. ), 1983, Sediment Diagenesis. D. Reidel Publishing Co., Dordrecht, Holland 427p.

    Google Scholar 

  • Perel’man, A. I., 1967, Geochemistry of Epigenesis. Plenum Press, New York, 266p.

    Google Scholar 

  • Plumley, W. J., 1980, Abnormally high fluid pressure: Survey of some basic principles. American Association of Petroleum Geologists Bulletin 64:414–30.

    Google Scholar 

  • Rittenhouse, G., 1971, Pore-space reduction by solution and cementation. American Association of Petroleum Geologists Bulletin 55:80–91.

    Google Scholar 

  • Runnells, D. D., 1969, Diagenesis, chemical sediments and the mixing of natural waters. Journal of Sedimentary Petrology 39:1188–201.

    Google Scholar 

  • Scholle, P. A., and P. R. Schluger (eds. ), 1979, Aspects of Diagenesis. Society of Sedimentary Geology Special Publication 26, Tulsa, Okla., 443p.

    Google Scholar 

  • Siever, R., 1979, Plate-tectonic controls on diagenesis. Journal of Geology 87:127–55.

    Google Scholar 

  • Suttner, L. J., and P. K. Dutta, 1986, Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. Journal of Sedimentary Petrology 56:329–45.

    Google Scholar 

  • Swarbrick, E. E., 1968, Physical diagenesis: Intrusive sediment and connate water. Sedimentary Geology 2:161–75.

    Google Scholar 

  • Teodorovich, G. I., 1961, Authigenic Minerals in Sedimentary Rocks. Consultants Bureau, New York, 120p.

    Google Scholar 

  • Velde, B., and E. Nicot, 1985, Diagenetic clay mineral composition as a function of pressure, temperature, and chemical activity. Journal of Sedimentary Petrology 55:541–7.

    Google Scholar 

  • Williams, L. A., and D. A. Crerar, 1985, Silica diagenesis: I, Solubility controls; II, General mechanisms. Journal of Sedimentary Petrology 55:301–11; 312–21.

    Google Scholar 

Biological Processes

  • Aiken, G. R., D. M. McKnight, R. L. Wershaw, and P. MacCarthy, 1985, Humic Substances in Soil, Sediment and Water. Wiley-Interscience, New York, 692p.

    Google Scholar 

  • Almasi, M. N., A. Al-Zamel, D. J. Shearman, and A. Reda, 1987, Effects of natural and artificial Thalassia on rates of sedimentation. Journal of Sedimentary Petrology 57:901–6.

    Google Scholar 

  • Bird, E. C. F., 1971, Mangroves as land builders. Victoria Naturalist 88:189–97.

    Google Scholar 

  • Buick, R., 1984, Carbonaceous filaments from North Pole, Western Australia: Are there fossil bacteria in Archaean stromatolites? Precambrian Research 24:157–72.

    Google Scholar 

  • Buick, R., J. S. R. Dunlop, and D. I. Groves, 1981, Stromatolite recognition in ancient rocks; an appraisal of irregularly laminated structures in an Early Archaean chert—barite unit from North Pole, Western Australia. Alcheringa 5:161–81.

    Google Scholar 

  • Calvert, S. E., 1974, Deposition and diagenesis of silica in marine sediments. In K. J. Hsu and H. C. Jenkyns, Pelagic Sediments on Land and Under the Sea. International Association of Sedimentologists, Special Publication 1, Blackwell Scientific Publications, Oxford, pp. 273–300.

    Google Scholar 

  • Cloud, P. E., 1973, Paleoecological significances of the banded iron-formation. Economic Geology 68:1135–44.

    Google Scholar 

  • Cloud, P. E., 1974, Evolution of ecosystems. American Scientist 62:54–66.

    Google Scholar 

  • Degens, E. T., 1989, Perspectives on Biogeochemistry. Springer-Verlag, Berlin.

    Google Scholar 

  • Dillon, W. P., and H. B. Zimmerman, 1970, Erosion by biological activity in two New England submarine canyons. Journal of Sedimentary Petrology 40:542–7.

    Google Scholar 

  • Frankel, L., and D. J. Mead, 1973, Mucilaginous matrix of some estuarine sands in Connecticut. Journal of Sedimentary Petrology 43:1090–5.

    Google Scholar 

  • Frydl, P., and C. W. Stearn, 1978, Rate of bioerosion by parrotfish in Barbados reef environment. Journal of Sedimentary Petrology 48:1149–58.

    Google Scholar 

  • Gilbert, R., 1984, The movement of gravel by the alga Fucus vesiculosis (L. ) on an arctic intertidal flat. Journal of Sedimentary Petrology 54:463–8.

    Google Scholar 

  • Hine, A. C., M. W. Evans, R. A. Davis, and D. F. Belknap, 1987, Depositional response to seagrass mortality along a low-energy, barrier-island coast: West-Central Florida. Journal of Sedimentary Petrology 57:431–9.

    Google Scholar 

  • Holland, H. D., and M. Schidlowski (eds. ), 1982, Mineral Deposits and the Evolution of the Biosphere. Springer-Verlag, New York.

    Google Scholar 

  • Ittekkot, V., S. Kempe, W. Michaelis, and A. Spitzy, 1990, Facets of Modern Biogeochemistry. Springer-Verlag, Berlin, 433p.

    Google Scholar 

  • Lasserre, P., and J. -M. Martin, 1986, Biogeochemical Processes at the Land—Sea Boundary. Elsevier Oceanography Series 43, Elsevier, Amsterdam, 214p.

    Google Scholar 

  • McCave, I. N., 1988, Biological pumping upwards of the coarse fraction of deep-sea sediments. Journal of Sedimentary Petrology 58:148–58.

    Google Scholar 

  • McConchie, D. M., 1987, The geology and geochemistry of the Joffre and Whaleback Shale members of the Brockman Iron Formation, Western Australia. In P. Appel and G. LaBerge (eds. ), Precambrian Iron Formations. Theophrastus Publications, Athens, pp. 541–601.

    Google Scholar 

  • McConchie, D. M., and L. M. Lawrance, 1991, The origin of high cadmium loads in some bivalve molluscs from Shark Bay, Western Australia: A new mechanism for cadmium uptake by filter feeding organisms. Archives of Environmental Contamination and Toxicology 21:303–10.

    Google Scholar 

  • Pryor, W. A., 1975, Biogenic sedimentation and alteration of argillaceous sediments in shallow marine environments. Geological Society of America Bulletin 86:1244–54.

    Google Scholar 

  • Raymond, P. E., and H. C. Stetson, 1931, A new factor in the transportation and distribution of marine sediments. Science 73:105–6.

    Google Scholar 

  • Redfield, A. C., 1958, The biological control of chemical factors in the environment. American Scientist 46:205–21.

    Google Scholar 

  • Scoffin, T. P., 1970, The trapping and binding of subtidal carbonate sediments by marine vegetation in Bimini Lagoon, Bahamas. Journal of Sedimentary Petrology 40:249–73.

    Google Scholar 

  • Stearley, R. F., and A. A. Ekdale, 1989, Modern marine bioerosion by macroinvertebrates, northern Gulf of California. Palaios 4:453–67.

    Google Scholar 

  • Stephens, W. M., 1962, Trees that make land. Sea Frontiers 8: 219–30.

    Google Scholar 

  • Swinbanks, D. B., 1981, Sediment reworking and the biogenic formation of clay laminae by Arenicola pacifica. Journal of Sedimentary Petrology 51:1137–45.

    Google Scholar 

  • Syvitski, J. P. M., and D. A. van Everdingen, 1981, A reevaluation of the geologic phenomenon of sand flotation: A field and ex-perimental approach. Journal of Sedimentary Petrology 51:1315–22.

    Google Scholar 

  • Tudhope, A. W., and M. J. Risk, 1985, Rate of dissolution of carbonate sediments by microboring organisms, Davies Reef, Australia. Sedimentology 32:440–7.

    Google Scholar 

  • Walter, M. R., and H. J. Hofmann, 1983, The palaeontology and palaeoecology of Precambrian iron-formations. In A. F. Trendall and R. C. Morris (eds. ), Iron-Formation Facts and Problems. Elsevier, Amsterdam, pp. 373–400.

    Google Scholar 

  • Waples, D., 1981, Organic Geochemistry for Exploration Geolo-gists. Burgess, CEPCO Division, Minneapolis, Minn., 151p.

    Google Scholar 

  • Ward, L. G., W. R. Boynton, and W. M. Kemp, 1984, The influence of waves and seagrass communities on suspended particulates in an estuarine embayment. Marine Geology 59:85–103.

    Google Scholar 

  • Windley, B. F. (ed. ), 1976, The Early History of Earth. Wiley & Sons, London.

    Google Scholar 

Volcanic Processes

  • Cole, R. B., and P. G. DeCelles, 1991, Subaerial to submarine transitions in early Miocene pyroclastic flow deposits, southern San Joaquin Basin, California. Geological Society of America Bulletin 103:221–35.

    Google Scholar 

  • Chough, S. K., and Y. K. Sohn, 1990, Depositional mechanics and sequences of base surges, Songaksan tuff ring, Cheju Island, Korea. Sedimentology 37:1115–35.

    Google Scholar 

  • Fisher, R. V., and H. -U. Schmincke, 1984, Pyroclastic Rocks. Springer-Verlag, New York, 472p.

    Google Scholar 

  • Fisher, R. V., and G. A. Smith (eds. ), 1991, Sedimentation in Volcanic Settings. Society for Sedimentary Geology Special Publication 45, Tulsa, Okla., 257p.

    Google Scholar 

  • Smith, G. A., 1986, Coarse-grained nonmarine volcaniclastic sediment: Terminology and depositional process. Geological Association of America Bulletin 97:1–10.

    Google Scholar 

  • Smith, G. A., and D. Kalzman, 1991, Discrimination of eolian and pyroclastic-surge process in the generation of cross-bedded tuffs. Jemez Mountains volcanic field, New Mexico. Geology 19:465–8.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lewis, D.W., McConchie, D. (1994). Processes in Sedimentation. In: Practical Sedimentology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2634-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2634-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6130-5

  • Online ISBN: 978-1-4615-2634-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics