Skip to main content

Part of the book series: Advances in Meat Research ((ADMERE,volume 10))

Abstract

The HACCP approach in the food industry has most often been applied to the prevention of microbiological problems, particularly the prevention of foodborne infection or intoxication. The analysis of microbiological hazards1 and definition of critical control points remains, however, an inexact process. General sources of information to assist in this process include the scientific literature, consumer complaints, prior documentation of health risks associated with the product, regulatory authority recommendations and bulletins and reports of disease surveillance authorities, (e.g. CDC,2 PHLS3). Structured systems to guide HACCP teams through this process, in the form of a series of pro forma and questionnaires, (IAMFES, 1991; NACMCF, 1992; CACFH, 1993), decision trees (NACMCF, 1992) or of interactive computer programmes (CFDRA, 1992) are valuable aids. Generic HACCP models, applicable to particular product types, have also been prepared and published (Stier, 1992; MFSCNFPA, 1993).

‘ In place of time-consuming, cost-prohibitive, and ineffective microbiological testing, physical and chemical measurements can be used as indirect measures of microbiological control. In these instances, the correlation between the physical or chemical parameters with the microbiological parameters would first need to be determined’.

(Moberg, 1992)

1HACCP is applicable to problems of food spoilage also (see §13.3.3). In this context, food spoilage may also be considered a microbiological ‘ hazard’.

2CDC: Centers for Disease Control, Atlanta, Georgia, USA.

3PHLS: Public Health Laboratory Service, London, UK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adair, C. and Briggs, P.A. (1993) The concept and application of expert systems in the field of microbiological safety. J. Indus. Microbiol. 12, 3.

    Article  Google Scholar 

  • Adams, M.R., Little, C.L. and Easter, M.C. (1991) Modelling the effect of pH, acidulant and temperature on the growth rate of Yersinia enterocolitica. J. Appl. Bacteriol. 71, 65.

    Google Scholar 

  • Baird-Parker, A.C. and Kilsby, D.C. (1987) Principles of predictive food microbiology. J. Appl. Bacteriol. Sympos. Suppl. 63, 43S.

    Article  Google Scholar 

  • Baker, D. (1993) Probability models to assess the safety of foods with respect to Clostridium botulinum. J. Indus. Microbiol. 12, 156.

    Article  Google Scholar 

  • Baker, D., Genigeorgis, C., Glover, J. and Razavilar, V. (1990) Growth and toxigenesis of C. botulinum type E in fishes packaged under modified atmospheres. Internat. J. Food Microbiol. 10, 269.

    Google Scholar 

  • Broughall, J.M. and Brown, C. (1984) Hazard analysis applied to microbial growth in foods: Development and application of three-dimensional models to predict bacterial growth. Food Microbiol. 1, 13.

    Article  Google Scholar 

  • Broughall, J.M., Anslow, P. and Kilsby, D.C. (1983) Hazard analysis applied to microbial growth in foods: Development of mathematical models describing the effect of water activity. J. Appl. Bacteriol. 55, 101.

    Article  Google Scholar 

  • Buchanan, R.L. (1991) Using spreadsheet software for predictive microbiology applications. J. Food Safety 11, 123.

    Article  Google Scholar 

  • Buchanan, R.L. (1992a) Predictive microbiology: mathematical modeling of microbial growth. ACS Sympos. Series 484, 250.

    Article  Google Scholar 

  • Buchanan, R.L. (1992b) Developing and distributing user-friendly application software. J. Indus. Microbiol. 12, 251.

    Article  Google Scholar 

  • Buchanan, R.L. and Deroever, C.M. (1993) Limits in assessing microbiological food safety. J. Food Prot. 56, 725.

    Google Scholar 

  • CACFH (Codex Alimentarius Commission; Codex Committee on Food Hygiene) (1993) Guidelines for the Application of Hazard Analysis Critical Control Point (HACCP) System (Alinorm 93/13A. Appendix B), Food and Agriculture Organisation/World Health Organization, Rome.

    Google Scholar 

  • Casolari, A. (1981) A model describing microbial inactivation and growth kinetics. J. Theor. Biol. 88, 1.

    Article  Google Scholar 

  • CFDRA (Campden Food and Drink Research Association) (1992) Hazard Analysis Critical Control Point software, Version 1.0. Campden Food and Drink Research Association, Gloucestershire, UK.

    Google Scholar 

  • Chandler, R.E. (1988) The Effect of Temperature and Water Activity on Microbial Growth Rate and Food Spoilage. Ph.D. Thesis, University of Tasmania, Hobart, Australia.

    Google Scholar 

  • Chen, H. and Donnelly, C.W. (1992) Development of a computer-aided HACCP program to control Listeria in dairy plant environment. (Abstract only). J. Indus. Microbiol. 12, 349.

    Google Scholar 

  • Christian, J.H.B. (1994) Problems with HACCP. Food Australia 46, 81.

    Google Scholar 

  • Cole, M.B. (1991) Databases in modern food microbiology. Trends Food Sci. Technol. (Nov.), 293.

    Google Scholar 

  • Crueger, W. and Crueger, A. (1990) Biotechnology: A Textbook of Industrial Microbiology, 2nd edn. (English translation editor: T.D. Brock). Sinauer Associates, Inc., Sunderland, Massachusetts, USA.

    Google Scholar 

  • Dalgaard, P. (1993) Evaluation and Prediction of Microbial Fish Spoilage. Ph.D. Thesis, Royal Veterinary and Agricultural University, Copenhagen, Denmark.

    Google Scholar 

  • Davey, K.R. (1989) A predictive model for combined temperature and water activity on microbial growth during the growth phase. J. Appl. Bacteriol. 67, 483.

    Article  Google Scholar 

  • Davey, K.R. (1992) Opinion: Predictive modelling. Letters Appl. Microbiol. 14, 217.

    Article  Google Scholar 

  • Dodds, K.L. (1993) An introduction to predictive microbiology and the evelopment and use of probability models with Clostridium botulinum. J. Indus. Microbiol. 12, 139.

    Article  Google Scholar 

  • Farber, J.M. (1986) Predictive modeling of food deterioration and safety. In Foodborne Microorganisms and their Toxins. (M.D. Pierson and N.J. Stern eds.), pp. 57–90, Marcel Dekker Inc, New York.

    Google Scholar 

  • Genigeorgis, C.A. (1981) Factors affecting the probability of growth of pathogenic microorganisms in foods. J. Am. Vet. Med. Assoc. 179, 1410.

    Google Scholar 

  • Gibson, A.M. and Roberts, T.A. (1989) Predicting microbial growth: Development of a mathematical model to predict bacterial growth responses. Food Australia 41, 1075.

    Google Scholar 

  • Gill, C.O. (1984) Prevention of early spoilage of livers. Proc. 30th Europ. Mtg. Meat Res. Workers, Bristol, UK. pp. 240–241.

    Google Scholar 

  • Gill, C.O. (1986) Temperature function integration for hygiene evaluation of food processing procedures. Food Technol. Australia 38, 203.

    Google Scholar 

  • Gill, C.O. and Harrison, J.C.L. (1985) Evaluation of the hygienic efficiency of offal cooling procedures. Food Microbiol. 2, 63.

    Article  Google Scholar 

  • Gill, C.O. and Jones, T. (1992a) Assessment of the hygienic efficiencies of two commercial processes for cooling pig carcasses. Food Microbiol. 90, 335.

    Article  Google Scholar 

  • Gill, C.O. and Jones, S.D.M. (1992b) Evaluation of a commercial process for collection and cooling of beef offals by a temperature function integration technique. Internat. J. Food Microbiol. 15, 131.

    Article  Google Scholar 

  • Gill, C.O. and Phillips, D.M. (1990) Hygienically appropriate time/temperature parameters for raw meat processing. Cong. Proc: 36th Internat. Cong. Meat Sci. Technol., Havana, Cuba. pp. 458–470.

    Google Scholar 

  • Gill, C.O. and Phillips, D.M. (1993) The efficiency of storage during distant continental transportation of beef sides and quarters. Food. Res. Internat. 26, 239.

    Article  Google Scholar 

  • Gill, C.O., Phillips, D.M., Loeffen, M.P.F. and Bishop, C. (1988a) A computer program for assessing the remaining storage life of chilled red meats from product temperature histories, in Refrigeration for Food and People: Proc. Meetings Commissions C2, Dl, D2/3,El (September 5–9, 1988), Institut Internat. du Froid Internat. Institute of Refrigeration, Paris. pp. 73–77.

    Google Scholar 

  • Gill, C.O., Phillips, D.M., Loeffen, M.P.F. and Bishop, C. (1988b) A computer program for evaluating the hygienic efficiency of meat processing procedures from product temperature history data. Cong. Proc: 34th Internat. Cong. Meat Sci. Technol., Brisbane, Australia. pp. 531–532.

    Google Scholar 

  • Gill, C.O., Harrison, J.C.L. and Phillips, D.M. (1991a) Use of a temperature function integration technique to assess the hygienic adequacy of a beef carcass cooling process. Food Microbiol. 8, 83.

    Article  Google Scholar 

  • Gill, C.O., Jones, S.D.M. and Tong, A.K.W. (1991b) Application of a temperature function integration technique to assess the hygienic adequacy of a process for spray chilling beef carcasses. J. Food Prot. 54, 731.

    Google Scholar 

  • Gould, G. (1989) Predictive mathematical modelling of microbial growth and survival in foods. Food Sci. Technol. Today 3, 89.

    Google Scholar 

  • Hudak-Roos, M. and Garrett, E.S. (1992) Monitoring critical control point critical limits, in HACCP: Principles and Application (M.D. Pierson and D.A. Corlett, Jr. eds.), Van Nostrand Reinhold, New York. pp. 62–71.

    Chapter  Google Scholar 

  • Humber, J. (1992) Control points and critical control points, in HACCP: Principles and Application (M.D. Pierson and D.A. Corlett, Jr. eds.), Van Nostrand Reinhold, New York. pp. 97–194.

    Chapter  Google Scholar 

  • IAMFES (International Association of Milk, Food and Environmental Sanitarians, Inc.) (1991) Procedures to Implement the Hazard Analysis Critical Control Point System. IAMFES, Des Moines, Iowa, USA.

    Google Scholar 

  • Jones, J.E. and Walker, S.J. (1993) Advances in modeling microbial growth. J. Indus. Microbiol. 12, 200.

    Article  Google Scholar 

  • Leistner, L. (1985) Hurdle technology applied to meat products of the shelf stable and intermediate moisture food types, in Properties of Water in Foods in Relation to Quality and Stability (D. Simatos and J.L. Multon, eds.). Martinus Nijhoff Publishers, Dordrecht, Germany. p. 309.

    Chapter  Google Scholar 

  • Leistner, L. (1992) Food preservation by combined methods. Food. Res. Internat. 25, 151.

    Article  Google Scholar 

  • Lowry, P.D., Gill, C.O. and Pham, Q.T. (1989) A quantitative method of determining the hygienic efficiency of meat thawing processes. Food Australia 41, 1080.

    Google Scholar 

  • Lund, B. (1993) Quantification of factors affecting the probability of development of pathogenic bacteria, in particular Clostridium botulinum, in foods. J. Indus. Microbiol. 12, 256.

    Article  Google Scholar 

  • Maas, M.R. (1993) Development and use of probability models: The industry perspective. J. Indus. Microbiol. 12, 256.

    Article  Google Scholar 

  • Mackey, B.A. and Kerridge, A.L. (1988) The effect of incubation temperature and inoculum size on growth of salmonellae in minced beef. Int. J. Food Microbiol. 6, 57.

    Article  Google Scholar 

  • McMeekin, T.A. and Olley, J. (1986) Predictive microbiology. Food Technol. Australia 38, 331.

    Google Scholar 

  • McMeekin, T.A. and Ross, T. (1993) Use of predictive microbiology in relation to meat and meat products. Rev. Papers and Abstr. 39th Internat. Cong. Meat Sci. Technol. Calgary, Canada, Aug. 1–6, 1993. pp. 257–274.

    Google Scholar 

  • McMeekin, T.A., Chandler, R.E., Doe, P.E., Garland, C.D., Olley, J., Putro, S. and Ratkowsky, D.A. (1987) Model for the combined effect of temperature and water activity on the growth rate of Staphylococcus xylosus. J. Appl. Bacteriol. 62, 543.

    Article  Google Scholar 

  • McMeekin, T.A., Ross, T. and Olley, J. (1992) Application of predictive microbiology to assure the quality and safety of fish and fish products. Internat. J. Food Microbiol. 15, 13.

    Article  Google Scholar 

  • McMeekin, T.A., Olley, J., Ross, T. and Ratkowsky, D.A. (1993) Predictive Microbiology: Theory and Application. Research Studies Press, Taunton, UK; J. Wiley & Sons Inc., New York.

    Google Scholar 

  • MFSCNFPA (Microbiology and Food Safety Committee of the National Food Processors Association) (1993) HACCP implementation: A generic model for chilled foods. J. Food Prot. 56, 1077.

    Google Scholar 

  • Moberg, L.J. (1992) Establishing critical limits for control points, in HACCP: Principles and Application (M.D. Pierson and D.A. Corlett, Jr. eds.). Van Nostrand Rheinhold, New York. pp. 50–61.

    Chapter  Google Scholar 

  • NACMCF (National Advisory Committee on Microbiological Criteria for Foods) (1992) Hazard analysis and critical control point system. Internat. J. Food Microbiol. 16, 1.

    Article  Google Scholar 

  • Neumeyer, K. (1992) Effect of temperature history on predicting the growth response of Staphylococcus aureus. B.Sc. (Hons.) Thesis, University of Tasmania, Hobart, Australia.

    Google Scholar 

  • NFA (National Food Authority) (1993) Food standards: Food associated with Listeriosis outbreaks. Draft Gazette Notice v.3. National Food Authority, Canberra, Australia.

    Google Scholar 

  • Nixon, P.A. (1971) Temperature integration as a means of assessing storage conditions, in Report on Quality in Fish Products, Seminar No. 3. Fishing Industry Board, Wellington, New Zealand. pp. 33–44.

    Google Scholar 

  • Quintavalla, S. and Parolari, G. (1993) Effects of temperature, a w and pH on the growth of Bacillus cells and spores A response surface methodology study. Internat. J. Food Microbiol. 19, 207.

    Article  Google Scholar 

  • Ratkowsky, D.A. (1992) Predicting response times in predictive food microbiology. Occasional Paper No. 1992/1. Department of Primary Industry, Fisheries and Energy, Tasmania, Research and Development Unit, Biometrics Section, Australia.

    Google Scholar 

  • Ratkowsky, D.A. and Ross, T. (1995) Modelling the bacterial growth/no growth interface. Lett. Appl. Microbiol. 20, 29.

    Article  Google Scholar 

  • Ratkowsky, D.A., Ross, T., McMeekin, T.A. and Olley, J. (1991) Comparison of Arrhenius-type and Bělehrádek-type models for prediction of bacterial growth in foods. J. Appl. Bacteriol. 71, 452.

    Article  Google Scholar 

  • Reichel, M.P., Phillips, D.M., Jones, R. and Gill, C.O. (1991) Assessment of the hygienic adequacy of a commercial hot boning process for beef by a temperature function integration technique. Internat. J. Food Microbiol. 14, 27.

    Article  Google Scholar 

  • Rhodehamel, E.J. (1992) Overview of biological, chemical and physical hazards, in HACCP: Principles and Application (M.D. Pierson and D.A. Corlett, Jr. eds.). Van Nostrand Reinhold, New York. pp. 8–28.

    Chapter  Google Scholar 

  • Roberts, T.A. (1989) Combinations of antimicrobials and processing methods. Food Technol. Jan., 156.

    Google Scholar 

  • Roberts, T.A. (1990) Predictive modelling of microbial growth. Food Technol. Internat., Europe 1990, 231.

    Google Scholar 

  • Roberts, T.A. and Jarvis, B. (1983) Predictive modelling of food safety with particular reference to Clostridium botulinum in model cured meat systems, in Food Microbiology: Advances and Prospects (T.A. Roberts and F.A. Skinner eds.). Academic Press, New York. pp. 85–95.

    Google Scholar 

  • Ross, T. and McMeekin, T.A. (1994) Predictive microbiology: A review. Internat. J. Food Microbiol. 23, 241.

    Article  Google Scholar 

  • Scott, W.J. (1937) The growth of micro-organisms on ox muscle. II. The influence of temperature. J. Council Scient. Indus. Res., Australia 10, 338.

    Google Scholar 

  • Simpson, R., Li, K.Y. and Torres, J.A. (1989) A management tool to improve the microbial quality of refrigerated foods, in Proc. Internat. Conf Technological Innovations in Freezing and Refrigeration of Fruit and Vegetables,University of California, Davis, CA. Institut Internat. du Froid Internat. Institute of Refrigeration, Paris. pp. 155–168.

    Google Scholar 

  • Smith, M.G. (1985) The generation time, lag time and minimum temperature of growth of coliform organisms on meat, and the implications for codes of practice in abattoirs. J. Hyg. Cambridge 94, 289.

    Article  Google Scholar 

  • Smith, M.G. (1987) Calculation of the expected increases of coliform organisms, Escherichia coli and Salmonella typhimurium in raw blended mutton tissue. Epidemiolog. Infect. 99, 323.

    Article  Google Scholar 

  • Stier, R. (1992) Practical application of HACCP, in HACCP: Principles and Application (M.D. Pierson and D.A. Corlett, Jr. eds.). Van Nostrand Reinhold, New York. pp. 126–168.

    Chapter  Google Scholar 

  • Stumbo, C.R., Purokit, K.S., Ramakrishnan, T.V., Evans, D.A. and Francis, F.J. (1983) CRC Handbook of Lethality Guides for Low-acid Canned Foods. Vol. 1. CRC Press, Boca Raton.

    Google Scholar 

  • Sutherland, J.P., Bayliss, A.J. and Roberts, T.A. (1994) Predictive modelling of growth of Staphylococcus aureus: the effects of temperature, p1I and sodium chloride. Internat. J. Food Microbiol. 21, 217.

    Article  Google Scholar 

  • Voyer, R. and McKellar, R.C. (1993) MKES Tools: A microbial kinetics expert system for developing and assessing food production systems. J. Indus. Microbiol. 12, 256.

    Article  Google Scholar 

  • Walker, S.J. and Jones, J.E. (1992) Predictive microbiology: data and models bases. Food Technol. Internat., Europe 1992, 209.

    Google Scholar 

  • Walker, S.J. and Jones, J.E. (1993) Protocols for data generation for predictive modeling. J. Indus. Microbiol. 12, 273.

    Article  Google Scholar 

  • Whiting, R.C. and Cygnarowicz-Provost, M. (1992) A quantitative model for bacterial growth and decline. Food Microbiol. 9, 269.

    Article  Google Scholar 

  • Wijtzes, T., McClure, P.J., Zwietering, M.H. and Roberts, T.A. (1993) Modelling bacterial growth of Listeria monocytogenes as a function of water activity, pH and temperature. Internat. J. Food. Microbiol. 18, 139.

    Article  Google Scholar 

  • Zwietering, M.H., Wijtzes, T., de Wit, J.C. and van’t Reit, K. (1992) A decision support system for prediction of the microbial spoilage in foods. J. Food Prot. 55, 973.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ross, T., Mcmeekin, T.A. (1995). Predictive microbiology and HACCP. In: Pearson, A.M., Dutson, T.R. (eds) HACCP in Meat, Poultry, and Fish Processing. Advances in Meat Research, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2149-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2149-5_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5898-5

  • Online ISBN: 978-1-4615-2149-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics