Skip to main content

Strong Coupling in Semiconductor Microcavities

  • Chapter
Confined Electrons and Photons

Part of the book series: NATO ASI Series ((NSSB,volume 340))

Abstract

Progress in the science and technology of semiconductors has enabled physicists and engineers not only to conceive and implement new electronic, optical, and optoelectronic devices, but also to probe fundamental phenomena that emerge from new device structures. Indeed, much of the excitement of semiconductor physics stems from the interplay of fundamental investigations and practical applications. The development of quantum wells and other heterostructures has enabled the implementation of a broad range of devices based on the quantization of electronic states; i.e. it has been possible to control the electron wavefunction in crystal structures. Quite recently, the development of technology for fabricating modulated dielectric structures in semiconductors has also made it possible to control the electromagnetic field configuration in device structures. As discussed by several authors in this volume, this has opened up the possibility for numerous applications, such as “thresholdless” lasers and resonant-cavity LED’s, modulators, and detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Haroche, in Fundamental systems in Quantum Optics, edited by J. Dalibard et. al. (Elsevier, Amsterdam, 1992), and references therein.

    Google Scholar 

  2. J.J. Sanchez-Mondragon, N.B. Narozhny, and J.H. Eberly, “Theory of Spontaneous-Emission Line Shape in an Ideal Cavity”, Phys. Rev. Lett. 51, 550 (1983).

    Article  Google Scholar 

  3. J J. Hopfield, “Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals” Phys Rev. 112, 1555 (1958).

    Article  MATH  Google Scholar 

  4. R.G. Ulbrich and G.W. Fehrenbach, “Polariton Wave Packet Propagation in the Exciton Resonance of a Semiconductor,” Phys. Rev. Lett. 43, 963 (1979).

    Article  Google Scholar 

  5. D. Fröhlich, A. Kulick, B. Uebbing, A. Mysyrowicz, V. Langer, H. Stolz, and W. von der Osten, “Coherent Propagation and Quantum Beats of Quadrupole Polaritons in Cu2O,” Phys. Rev. Lett. 67, 2343 (1991).

    Article  Google Scholar 

  6. T. Mishina and Y. Masumoto, “Coherent Propagation of Femtosecond Optical Pulses in a Monoclinic ZnP2 Single Crystal,” Phys. Rev. Lett. 71, 2785 (1993).

    Article  Google Scholar 

  7. K.H. Pantke, P. Schillak, B.S. Razbirin, V.G. Lyssenko, and J.M. Hvam, “Nonlinear Quantum Beats of Propagating Polaritons”, Phys. Rev. Lett. 70, 327 (1993).

    Article  Google Scholar 

  8. S. John and J. Wang, “Quantum Electrodynamics near a Photonic Band Gap: Photon Bound States and Dressed Atoms”, Phys. Rev. Lett. 64, 2418(1990).

    Article  Google Scholar 

  9. R.F. Nabiev. P. Yeh, and J.J. Sanchez-Mondragon, “Dynamics of the Spontaneous Emission of an Atom into the Photon-Density-of-States Gap: Solvable Quantum-Electrodynamical Model”, Phys. Rev. A 47, 3380 (1993).

    Article  Google Scholar 

  10. R.G. Ulbrich and C. Weisbuch, “Resonant Brillouin Scattering of Excitonic Polaritons in Gallium Arsenide”, Phys. Rev. Lett. 38, 865 (1977).

    Article  Google Scholar 

  11. U.S. Scmitt-Rink, D.S. Chemla, and D.A.B. Miller, “Linear and Nonlinear Optical Properties of Semiconductor Quantum Wells,” Adv. Phys. 38, 89 (1989).

    Article  Google Scholar 

  12. E.T. Jaynes and F.W. Cummings, Proc. IEEE 51, 89 (1963).

    Article  Google Scholar 

  13. L. Allen and J.H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).

    Google Scholar 

  14. P. Meystre and M. Sargent III, Elements of Quantum Optics, (Springer-Verlag, Berlin, 1991).

    Google Scholar 

  15. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions, (Wiley, New York, 1992).

    Google Scholar 

  16. G.S. Agarwal, “Vacuum-Field Rabi Oscillations of Atoms in a Cavity”, J. Opt. Soc. Am. B 2, 480 (1985).

    Article  Google Scholar 

  17. H.J. Carmichael, R. J. Brecha, M.G. Raizen, H.J. Kimble, and P.R. Rice, “Subnatural Linewidth Averaging for Coupled atomic and cavity-mode oscillators”, Phys. Rev. A 40, 5516 (1989).

    Article  Google Scholar 

  18. M.G. Raizen, R.J. Thompson, R.J. Brecha, H.J. Kimble, and H. J. Carmichael, “Normal-Mode splitting and Linewidth Averaging for Two-State Atoms in an Optical Cavity”, Phys. Rev. Lett. 63, 240 (1989).

    Article  Google Scholar 

  19. Y. Zhu, D.J. Gauthier, S. E. Morin, Q. Wu, H.J. Carmichael, and T.W. Mossberg, “Vacuum Rabi Splitting as a Feature of Linear-Dispersion Theory: Analysis and Experimental Observations”, Phys. Rev. Lett. 64, 2499 (1990).

    Article  Google Scholar 

  20. R.S. Knox, Theory of Excitons, (Academic, New York, 1963).

    MATH  Google Scholar 

  21. P.W. Milonni and J.H. Eberly, Lasers, (Wiley, New York, 1988), section 6.4.

    Google Scholar 

  22. P.C. Becker, H.L. Fragnito, C.H. Brito Cruz, R.L. Fork, J.E. Cunningham, J.E. Henry, C.V. Shank, “Femtosecond Photon Echoes from Band-to-Band Transitions in GaAs”, Phys. Rev. Lett. 61, 1647 (1988).

    Article  Google Scholar 

  23. L. Schultheis, A. Honold, J. Kuhl, K. Köhler, and C.W. Tu, Phys. Rev. B 34, 9027 (1986).

    Article  Google Scholar 

  24. D.S. Citrin, “Radiative Lifetimes of Excitons in Quantum Wells: Localization and Phase-Coherence Effects”, Phys. Rev. B 47, 3832 (1993).

    Article  Google Scholar 

  25. B. Deveaud, F. Clerot, N. Roy, K. Satzke, B. Sermage, and D.S. Katzer, “Enhanced Radiative Recombination of Free Excitons in GaAs Quantum Wells,” Phys. Rev. Lett. 67, 2355 (1991).

    Article  Google Scholar 

  26. See the lecture notes of L.C. Andreani and D. Citrin.

    Google Scholar 

  27. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, (Les Editions de Physique, Paris, 1989).

    Google Scholar 

  28. Y. Yamamoto, S. Machida, and G. Bjork, “Microcavity Semiconductor Laser with Enhanced Spontaneous Emission,” Phys. Rev. B 44, 657 (1991).

    Article  Google Scholar 

  29. L.C. Andreani, A. Pasquarello, “Accurate Theory of Excitons in GaAs-Ga1™xAlxAs Quantum Wells”, Phys. Rev. B 42, 8928 (1990).

    Article  Google Scholar 

  30. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the Coupled Exciton-Photon Mode Splitting in a Semiconductor Quantum Microcavity”, Phys. Rev. Lett. 69, 3314 (1992).

    Article  Google Scholar 

  31. J.L. Jewell, J.P. Harbison, A. Scherer, Y.H. Lee, and L.T. Florez, “Vertical-Cavity Surface-Emitting Lasers: Design, Growth, Fabrication, Characterization”, IEEE J. Quant. Electron., 27, 1332 (1991), and references therein.

    Article  Google Scholar 

  32. R. Binder, S.W. Koch, M. Lindberg, N. Peyghambarian, W. Schäfer, “Ultrafast Adiabatic Following in Semiconductors”, Phys. Rev. Lett. 65, 899 (1990).

    Article  Google Scholar 

  33. J. Shah, “Ultrafast Luminescence Spectroscopy Using Sum Frequency Generation”, IEEE J. Quant. Electron. 24, 276, (1988).

    Article  Google Scholar 

  34. This experimental technique is similar to that discussed in D. Kim, J. Shah, D.A.B. Miller, T.C. Damen, “Femtosecond-pulse distortion in quantum wells”, Phys. Rev. B 48, 17902 (1993).

    Google Scholar 

  35. J.H. Eberly and K. Wodkiewicz, “The Time-Dependent Physical Spectrum of Light,” J. Opt. Soc. Am. 67, 1252 (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Norris, T.B. (1995). Strong Coupling in Semiconductor Microcavities. In: Burstein, E., Weisbuch, C. (eds) Confined Electrons and Photons. NATO ASI Series, vol 340. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1963-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1963-8_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5807-7

  • Online ISBN: 978-1-4615-1963-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics