Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 340))

Abstract

A quantum radiator placed near a metallic or dielectric structure, or inside an electromagnetic resonator, behaves quite unlike in free space. The spontaneous emission rates can be altered and even made reversible, the Lamb shifts modified, new kinds of lasers or masers can be realized. The study of these effects constitutes the rapidly growing field of “Cavity Quantum Electrodynamics” (CQED).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E.M. Purcell, Spontaneous emission probabilities at radio frecjuencies, Phys. Rev. 69:681 (1946).

    Article  Google Scholar 

  2. H.B.G. Casimir, and I. Polder, The influence of retardation on the London-van der Waals force, Phys. Rev. 73:360 (1948).

    Article  MATH  Google Scholar 

  3. K.H. Drexhage, Interaction of light with monomolecular dye layers, in; “Progress in Optics XII”, E. Wolfed., p. 163, North Holland Amsterdam (1974).

    Google Scholar 

  4. P. Goy, J.M. Raimond, M. Gross, and S. Haroche, Observation of cavity-enhanced single atom spontaneous emission, Phys. Rev. Lett. 50:1903 (1983).

    Article  Google Scholar 

  5. R.C. Mulet, E.S. Hilfer, and D. Kleppner, Inhibited spontaneous emission by a Rydberg atom, Phys. Rev. Lett. 55:2137 (1985).

    Article  Google Scholar 

  6. V. Sandoghdar, C. Sukenik, E. Hinds, and S. Haroche, Direct measurement of the van der Waals interaction between an atom and its images in a micron-sized cavity, Phys. Rev. Lett. 68:3432(1992).

    Article  Google Scholar 

  7. J.M. Raimond, P. Goy. M. Gross, G. Fahre, and S. Haroche. Statistics of millimeter-wave photons emitted by a Rydberg atom maser: an experimental study of fluctuations in single mode superradiance, Phys. Rev. Lett. 49:1924 (1982).

    Article  Google Scholar 

  8. Y. Kaluzny, P. Goy, M. Gross, J.M. Raimond, and S. Haroche, Observation of self-induced Rabi oscillations in two-level atoms excited inside a resonant cavity, Phys. Rev. Lett. 51:1175 (1983).

    Article  Google Scholar 

  9. D. Meschede, H. Walther, and N. Klein, One-atom maser, Phys. Rev. Lett. 54:551 (1985).

    Article  Google Scholar 

  10. G. Rempe, F. Schmidt-Kaler, and I.L. Walther, Observation of sub-Poissonian photon statistics in a micromaser, Phys. Rev. Lett. 64:2783 (1990).

    Article  Google Scholar 

  11. M. Brune, J.M. Raimond, P. Goy, L. Davidovich, and S. Haroche, Realization of a two-photon maser oscillator, Phys. Rev. Lett. 59:1899 (1987).

    Article  Google Scholar 

  12. G. Rempe, H. Walther, and N. Klein, Observation of quantum collapse and revival in a one-atom maser, Phys. Rev. Lett. 58:353 (1987).

    Article  Google Scholar 

  13. F. Bernardot, P. Nussenzveig, M. Brune, J.M. Raimond, and S. Haroche, Vacuum Rabi splitting observed on a microscopic atomic sample in a microwave cavity, Euro. Phys. Lett. 17:33 (1991).

    Article  Google Scholar 

  14. W. Jhe, A. Anderson, E.A. Hinds, D. Meschede, L. Moi, and S. Haroche, Suppression of spontaneous decay at optical frequencies: test of vacuum field anisotropy in confined space, Phys. Rev. Lett. 58:666 (1987).

    Article  Google Scholar 

  15. F. de Martini, G. Innocenti, G.R. Jacobowitz, and P. Mataloni, Anomalous spontaneous emission time in a microscopic optical cavity, Phys. Rev. Lett. 59:2955 (1987).

    Article  Google Scholar 

  16. H. Yokoyama, M. Suzuki, and Y. Nambu, Spontaneous emission and laser oscillation properties of microcavities containing a dye solution, Appl. Phys. Lett. 58:2598 (1991).

    Article  Google Scholar 

  17. D.J. Heinzen, J.J. Childs, J.E. Thomas, and M.S. Feld, Enhanced an inhibited visible spontaneous emission by atoms in a confocal resonator, Phys. Rev. Lett. 58:1320 (1987).

    Article  Google Scholar 

  18. D.J. Heinzen, and M.S. Feld, Vacuum radiative level shift and spontaneous emission linewidth of an atom in an optical resonator, Phys. Rev. Lett. 59:2623 (1987).

    Article  Google Scholar 

  19. R.J. Thompson, G. Rempe, and H.J. Kimble, Observation of normal mode splitting for an atom in an optical cavity, Phys. Rev. Lett. 68:1132 (1992).

    Article  Google Scholar 

  20. A. Einstein, B. Podolski, and N. Rosen, Can quantum mechanical description of physical reality be considered complete?, Phys. Rev. 47:777 (1935).

    Article  MATH  Google Scholar 

  21. L. Davidovich, A. Maali, M. Brune, J.M. Raimond, and S. Haroche, Quantum switches and non-local microwave fields, Phys. Rev. Lett. 71:2360 (1993)

    Article  Google Scholar 

  22. E. Yablonovitch, T.J. Gmitter, and R. Bhat, Inhibited and enhanced spontaneous emission from optically thin AlGaAs/GaAs double heterostructure, Phys. Rev. Lett. 61:2546 (1988).

    Article  Google Scholar 

  23. H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S.D. Brorson, and E.P. Ippen, Enhanced spontaneous emission from GaAs quantum wells in monolithic microcavities, Appl. Phys. Lett. 57:2814 (1990).

    Article  Google Scholar 

  24. G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, Modification of spontaneous emission rate in planar dielectric microcavity structures, Phys. Rev. A44:669 (1991).

    Google Scholar 

  25. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett. 69:3314 (1992).

    Article  Google Scholar 

  26. S. Machida, and Y. Yamamoto, Observation of sub-poissonian photoelectron statistics in a negative feedback semiconductor laser, Opt. Comm. 57:290 (1986).

    Article  Google Scholar 

  27. S. Haroche, Rydberg atoms and radiation in a resonant cavity, in: “New Trends in Atomic Physics, Les Houches Summer School Session XXXVIII”, G. Grymberg, and R. Stora eds., North Holland, Amsterdam (1984).

    Google Scholar 

  28. S. Haroche, Cavity Quantum Electrodynamics, in: “Fundamental Systems in Quantum Optics, Les Houches Summer School, Session LIII”, J. Dalibard, J.M. Raimond, and J. Zinn-Justin, eds., North Holland, Amsterdam (1992).

    Google Scholar 

  29. S. Haroche, and J.M. Raimond, Radiative properties of Rydberg states in resonant cavities, in: “Advances in Atomic and Molecular Physics Vol XX”, D. Bates, and B. Bederson eds., Academic Press, New York (1985).

    Google Scholar 

  30. S. Haroche, and J.M. Raimond, Manipulation of non classical field states in a cavity by atom interferometry, in “Cavity Quantum Electrodynamics, Special Issue of Advances in Atomic and Molecular Physics”, P. Berman ed., Academic Press, New York (in press).

    Google Scholar 

  31. R.J. Glauber, Optical coherence and photon statistics, in: “Quantum Optics and Electronics, Les Houches Summer School”, C. de Witt, A. Blandin, and C. Cohen-Tannoudji eds., Gordon and Breach, London (1965).

    Google Scholar 

  32. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grymberg “Photons and Atoms: an Introduction to Quantum Electrodynamics”, Wiley, New York (1990).

    Google Scholar 

  33. R.G. Hulet, and D. Kleppner, Rydberg atoms in “circular” states, Phys. Rev. Lett 51:1430 (1983).

    Article  Google Scholar 

  34. C. Cohen-Tannoudji, Atomic motion in laser light, in; “Fundamental Systems in Quantum Optics, Les Houches Summer School, Session LIII”, J. Dalibard, J.M. Raimond, and J. Zinn-Justin eds., North Holland, Amsterdam (1992).

    Google Scholar 

  35. G. Rempe, R.J. Thompson, H.J. Kimble, and R. Lalezari, Measurement of ultra low losses in an optical interferometer, Opt. Lett. 17:363 (1992).

    Article  Google Scholar 

  36. L. Collot, V. Lefèvre, M. Brune, J.M. Raimond, and S. Haroche, Very high Q whispering gallery mode resonances observed on fused silica microspheres, Euro. Phys. Lett. 23:327 (1993).

    Article  Google Scholar 

  37. B.R. Mollow, Power spectrum of light scattered by two-level systems, Phys. Rev. 188:1969 (1969).

    Article  Google Scholar 

  38. Y. Zhu, D.J. Gauthier, S.E. Morin, Q. Wu, H.J. Charmichael, and T.W. Mossberg, Vacuum Rabi splitting as a feature of linear dispersion theory: analyzis and experimental observation, Phys. Rev. Lett. 64:2499 (1990).

    Article  Google Scholar 

  39. C. Cohen-Tannoudji, Introduction to quantum electrodynamics, in: “New Trends in Atomic Physics, Les Houches Summer School Session XXXVIII”, G. Grymberg and R. Stora eds., North Holland, Amsterdam (1984).

    Google Scholar 

  40. J. Dalibard, J. Dupont-Roc, and C. Cohen-Tannoudji, Vacuum fluctuations and radiation reaction: identification of their respective contributions, J. Phys. (Paris) 43:1617 (1982).

    Article  Google Scholar 

  41. J.M. Raimond, G. Vitrant, and S. Haroche, Spectral line broadening due to the interaction between very excited atoms: the dense Rydberg gas, J. Phys. B. Lett. 14:L655 (1981).

    Google Scholar 

  42. R.H. Dicke, Coherence in spontaneous radiation processes, Phys. Rev. 93:99 (1954).

    Article  MATH  Google Scholar 

  43. G. Scharf, On a quantum mechanical maser model, Helv. Phys. Acta 43:806 (1970).

    Google Scholar 

  44. M. Gross, and S. Haroche, Superradiance, an essay on the theory of collective spontaneous emission, Phys. Rep. 93:302 (1982).

    Article  Google Scholar 

  45. P. Filipowicz, J. Javanainen, and P. Meystre, Theory of a microscopic maser, Phys. Rev. A34:3077 (1986).

    Google Scholar 

  46. P. Filipowicz, J. Javanainen, and P. Meystre, Quantum and semi classical steady states of a kicked cavity mode, J. Opt. Soc. Am. B3:906 (1986).

    Google Scholar 

  47. G. Rempe, and H. Walther, Subpoissonian atomic statistics in a micromaser, Phys. Rev. A42:1650 (1990).

    Google Scholar 

  48. P. Meystre and E.M. Wright, Measurements-induced dynamics of a micromaser, Phys. Rev. A37:2524 (1988).

    Google Scholar 

  49. A.J. Legett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg and W. Zwerger, Dynamics of the dissipative two-state system, Rev. Mod. Phys. 59:1 (1987)

    Article  Google Scholar 

  50. A.D. Caldeira, and A.J. Legett, Quantum tunneling in a dissipative system, Ann. Phys. (N.Y.) 149:374 (1983).

    Article  Google Scholar 

  51. L. Davidovich, J.M. Raimond, M. Brune, and S. Haroche, Quantum theory of a two-photon micromaser, Phys. Rev. A36:3771 (1987).

    Google Scholar 

  52. P.P. Sorokin, and N. Braslau, Some theoretical apsects of a proposed double quantum stimulated emission device, IBM J. Res. and Dev. 8:177 (1964)

    Article  Google Scholar 

  53. A.M. Prokhorov, Quantum electrodynamics, Science 149:828 (1965).

    Article  Google Scholar 

  54. J.M. Raimond, M. Brune, P. Goy, and S. Haroche, Measuring photon numbers in a cavity by atomic interferometry: optimizing the convergence procedure, J. de Physique, Coll, Paris 15:17 (1990).

    Google Scholar 

  55. S. Haroche, M. Brune, and J.M. Raimond, Trapping atoms by the vacuum field in a cavity, Euro. Phys. Lett. 14:19 (1991).

    Article  Google Scholar 

  56. B.G. Englert, J. Schwinger, A.O. Barut, and M.O. Scully, Reflecting slow atoms from a micromaser field, Europhys. Lett. 14:25 (1991).

    Article  Google Scholar 

  57. D. Ivanov, and T.A.B. Kennedy, Photon number measurements with cold atoms, Phys. Rev. A47:566 (1993).

    Google Scholar 

  58. V.B. Braginsky, and F.Y. Khalili, Zh. Eksp. Theor. Fiz. 78:1712 (1977) [Quantum singularities of a ponderomotive meter of electromagnetic energy, Sov. Phys. JETP 46:705 (1977)].

    Google Scholar 

  59. A. LaPorta, R.E. Slusher, and B. Yurke, Back-action evading measurements of an optical field using parametric down conversion, Phys. Rev. Lett. 62:28 (1989).

    Article  Google Scholar 

  60. M.D. Levenson, R.M. Shelby, M. Reid, and D.F. Walls, Quantum non demolition detection of optical quadrature amplitudes, Phys. Rev. Lett. 57:2473 (1986).

    Article  Google Scholar 

  61. P. Grangier, J.F. Roch and G. Roger, Observation of backaction-evading measurement of an optical intensity in a three level atomic non-linear system, Phys. Rev. Lett. 66:1418 (1991).

    Article  Google Scholar 

  62. N.F. Ramsey, “Molecular Beams”, Oxford University Press, New York (1985).

    Google Scholar 

  63. S. Haroche, M. Brune, and J.M. Raimond, Manipulation of optical fields by atomic interferometry: quantum variations on a theme by Young, Appl. Phys. B54:355 (1992).

    Google Scholar 

  64. O. Carnal and J. Mlynek, Young’s double slit exepriment with atoms: a simple atom interferometer, Phys. Rev. Lett. 66:2689 (1991).

    Article  Google Scholar 

  65. M. Brune, S. Haroche, V. Lefevre, J.M. Raimond, and N. Zagury, Quantum non-demolition measurements of small photon numbers by Rydberg atom phase sensitive detection, Phys. Rev. Lett 65:976 (1990).

    Article  Google Scholar 

  66. M. Brune, S. Haroche, J.M. Raimond, L. Davidovich, and N. Zagury, Manipulation of photons in a cavity by dispersive atom-field coupling: quantum non demolition measurements and Schrödinger cat states, Phys. Rev. A45:5193 (1992).

    Google Scholar 

  67. S. Haroche, M. Brune, and J.M. Raimond, Measuring photon numbers in a cavity by atomic interferometry: optimizing the convergence procedure, Journal de Physique II, Paris, 2:659 (1992).

    Google Scholar 

  68. W. Nagourney, J. Sandberg, and H. Dehmelt, Shelved optical electron amplifier: observation of quantum jumps, Phys. Rev.Lett. 56:2797 (1986).

    Article  Google Scholar 

  69. P. Nussenzveig, F. Bernardot, M. Brune, J. Hare, J.M. Raimond, S. Haroche and W. Gawlik, Preparation of high principal quantum numbers circular states of rubidium Phys. Rev. A48:3991 (1993).

    Google Scholar 

  70. E. Schrödinger, Die gegenwärtige situation in der quantenmechanik, Naturwissenschaften 23:807–823 (1935).

    Article  Google Scholar 

  71. W. Zurek, Decoherence and the transition from quantum to classical Physics Today, Oct 1991, p. 36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Raimond, J.M., Haroche, S. (1995). Atoms in Cavities. In: Burstein, E., Weisbuch, C. (eds) Confined Electrons and Photons. NATO ASI Series, vol 340. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1963-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1963-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5807-7

  • Online ISBN: 978-1-4615-1963-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics