Skip to main content

Diversity, Ecology, and Isolation of Acetogenic Bacteria

  • Chapter
Acetogenesis

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

The characteristic property of homoacetogenic bacteria is their ability to use carbon dioxide as a widespread and easily available electron sink and to reduce it via the carbon monoxide dehydrogenase system to acetate as their typical fermentation product. First note of this activity goes back to Fischer, Lieske, and Winzer (1932) who observed that a sewage sludge sample under an oxygen-free hydrogen atmosphere in the presence of bicarbonate gave rise to the formation of acetic acid. After this, our knowledge on the metabolic versatility of isolated strains of homoacetogenic bacteria has increased considerably, and there is no doubt that homoacetogens are the most versatile physiological group among the anaerobic bacteria we know.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adamse, A. D. 1980. New isolation of Clostridium aceticum (Wieringa). Antonie van Leeuwenhoek 46:523–531.

    Article  PubMed  CAS  Google Scholar 

  • Andreae, M. O. 1986. The ocean as a source for atmospheric sulfur compounds. In: Biogenic Sulfur in the Environment, W. S. Saltzman and W. J. Cooper (eds.), pp. 2–14, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Andreesen, J. R., G. Gottschalk, and H. G. Schlegel. 1970. Clostridium formicoaceticum nov. spec. Isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch. Mikrobiol. 72:154–174.

    Article  PubMed  CAS  Google Scholar 

  • Bache, R., and N. Pfennig. 1981. Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch. Microbiol. 130:255–261.

    Article  CAS  Google Scholar 

  • Bak, F., K. Finster, and F. Rothfuß. 1992. Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria. Arch. Microbiol. 157:529–534.

    CAS  Google Scholar 

  • Balch, W. E., S. Schoberth, R. S. Tanner, and R. S. Wolfe. 1977. Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int. J. Syst. Bacteriol. 27:355–361.

    Article  CAS  Google Scholar 

  • Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43:260–296.

    PubMed  CAS  Google Scholar 

  • Barik, S., S. Prieto, S. B. Harrison, E. C. Clausen, and J. L. Gaddy. 1988. Biological production of alcohols from coal through indirect liquefaction. Appl. Biochem. Biotechnol. 18:363–378.

    Article  CAS  Google Scholar 

  • Barker, H. A., and V. Haas. 1944. Butyribacterium, a new genus of Gram-positive, non-sporulating anaerobic bacteria of intestinal origin. J. Bacteriol. 47:301–305.

    PubMed  CAS  Google Scholar 

  • Berman, M. H., and A. C. Frazer. 1992. Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers. Appl. Environ. Microbiol. 58:925–931.

    PubMed  CAS  Google Scholar 

  • Bernhardt, F.-H., H. Staudinger, and V. Ulrich. 1970. Eigenschaften einer p-Anisat-O-Demethylase im zellfreien Extrakt von Pseudomonas sp. Hoppe-Seyler’s. Z. Physiol. Chem. 351:467–478.

    Article  CAS  Google Scholar 

  • Bogdahn, M., J. R. Andreesen, and D. Kleiner. 1983. Pathways and regulation of N2, ammonium and glutamate assimilation by Clostridium formicoaceticum. Arch. Microbiol 134:167–169.

    Article  CAS  Google Scholar 

  • Bomar, M., H. Hippe, and B. Schink. 1991. Lithotrophic growth and hydrogen metabolism by Clostridium magnum. FEMS Microbiol. Lett. 83:347–350.

    Article  CAS  Google Scholar 

  • Braun, M., S. Schoberth, and G. Gottschalk. 1979. Enumeration of bacteria forming acetate from H2 and CO2 in anaerobic habitats. Arch. Microbiol. 120:201–204.

    Article  PubMed  CAS  Google Scholar 

  • Braun, M., F. Mayer and G. Gottschalk. 1981. Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch. Microbiol. 128:288–293.

    Article  PubMed  CAS  Google Scholar 

  • Braun, M., and G. Gottschalk. 1982. Acetobacterium wieringae sp. nov., a new species producing acetic acid from molecular hydrogen and carbon dioxide. Zbl. Bakt. Hyg., I. Abt. Orig. C3:368-376.

    Google Scholar 

  • Breznak, J. A., and J. M. Switzer. 1986. Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl. Environ. Microbiol. 52:623–630.

    PubMed  CAS  Google Scholar 

  • Breznak, J. A., J. M. Switzer, and H.-J. Seitz. 1988. Sporomusa termitida sp. nov., an H2/CO2-utilizing acetogen isolated from termites. Appl. Environ. Microbiol. 150:282–288.

    CAS  Google Scholar 

  • Buschhorn, H., P. Dürre, and G. Gottschalk. 1989. Production and utilization of ethanol by the homoacetogen Acetobacterium woodii. Appl. Environ. Microbiol. 55:1835–1840.

    PubMed  CAS  Google Scholar 

  • Cato, E. P., W. L. George, and S. M. Finegold. 1986. Genus Clostridium. In: Bergey’s Manual of Systematic Bacteriology, P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt (eds.), Vol. 2, pp. 1141–1207. Williams and Wilkins, Baltimore, MD.

    Google Scholar 

  • Conrad, R., F. Bak, H. J. Seitz, B. Thebrath, H. P. Mayer, and H. Schütz. 1989. Hydrogen turnover by psychotrophic homoacetogenic and mesophilic methanogenic bacteria in anoxic paddy soil and lake sediment. FEMS Microbiol. Ecol. 62:285–294.

    Article  CAS  Google Scholar 

  • Conrad, R., and B. Wetter. 1990. Influence of temperature on energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other anaerobic bacteria. Arch. Microbiol. 155:94–98.

    Article  CAS  Google Scholar 

  • Cord-Ruwisch, R., and B. Ollivier. 1986. Interspecies hydrogen transfer during methanol degradation by Sporomusa acidovorans and hydrogenophilic anaerobes. Arch. Microbiol 144:163–165.

    Article  CAS  Google Scholar 

  • Cord-Ruwisch, R., H.-J. Seitz, and R. Conrad. 1988. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149:350–357.

    Article  CAS  Google Scholar 

  • Daniel, S. L., and H. L. Drake. 1993. Oxalate-and glyoxylate-dependent growth and acetogenesis by Clostridium thermoaceticum. Appl. Environ. Microbiol. 59:3062–3069.

    PubMed  CAS  Google Scholar 

  • Dehning, I., M. Stieb, and B. Schink. 1989. Sporomusa malonica sp. nov., a homoacetogenic bacterium growing by decarboxylation of malonate or succinate. Arch. Microbiol. 151:421–426.

    Article  CAS  Google Scholar 

  • Diekert, G. B., and R. K. Thauer. 1978. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J. Bacteriol. 136:597–606.

    PubMed  CAS  Google Scholar 

  • Dörner, Ch., and B. Schink. 1991. Fermentation of mandelate to benzoate and acetate by a homoacetogenic bacterium. Arch. Microbiol. 156:302–306.

    Article  Google Scholar 

  • Dorn, M., J. R. Andreesen, and G. Gottschalk. 1978. Fermentation of fumarate and L-malate by Clostridium formicoaceticum. J. Bacteriol. 133:26–32.

    PubMed  CAS  Google Scholar 

  • Egli, C., T. Tschan, R. Scholtz, A. M. Cook, and Th. Leisinger. 1988. Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii. Appl. Environ. Microbiol. 54:2819–2824.

    PubMed  CAS  Google Scholar 

  • Eichler, B., and B. Schink. 1984. Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch. Microbiol. 140:147–152.

    Article  CAS  Google Scholar 

  • Eichler, B., and B. Schink. 1985. Fermentation of primary alcohols and diols and pure culture of syntrophically alcohol-oxidizing anaerobes. Arch. Microbiol. 143:60–66.

    Article  CAS  Google Scholar 

  • Emde, R., and B. Schink. 1987. Fermentation of triacetin and glycerol by Acetobacterium sp. No energy is conserved by acetate excretion. Arch. Microbiol. 149:142–148.

    Article  CAS  Google Scholar 

  • Finster, K., G. M. King, and F. Bak. 1990. Formation of methylmercaptan and dimethyl-sulfide from methoxylated aromatic compounds in anoxic marine and freshwater sediments. FEMS Microbiol. Ecol. 74:295–302.

    Article  CAS  Google Scholar 

  • Fischer, F., R. Lieske, and K. Winzer. 1932. Biologische Gasreaktionen. II. Mitteilung: Über die Bildung von Essigsäure bei der biologischen Umsetzung von Kohlenoxyd und Kohlensäure mit Wasserstoff zu Methan. Biochem. Z. 245:2–12.

    Google Scholar 

  • Fontaine, F. E., W. H. Peterson, E. McCoy, M. J. Johnson, and G. J. Ritter. 1942. A new type of glucose fermentation by Clostridium thermoaceticum n. sp. J. Bacteriol. 43:701–715.

    PubMed  CAS  Google Scholar 

  • Friedrich, M., U. Laderer, and B. Schink. 1991. Fermentative degradation of glycolic acid by defined syntrophic cocultures. Arch. Microbiol. 156:398–404.

    Article  CAS  Google Scholar 

  • Geerligs, G., H. C. Aldrich, W. Harder, and G. Diekert. 1987. Isolation and characterization of a carbon monoxide utilizing strain of the acetogen Peptostreptococcusproductus. Arch. Microbiol. 148:305–313.

    Article  CAS  Google Scholar 

  • Gößner, A., S. L. Daniel, and H. L. Drake. 1994. Acetogenesis coupled to the oxidation of aromatic aldehyde groups. Arch. Microbiol. (in press).

    Google Scholar 

  • Greening, R. C., and J. A. Z. Leedle. 1989. Enrichment and isolation of Acetitomaculum ruminis gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Arch. Microbiol. 151:399–406.

    Article  PubMed  CAS  Google Scholar 

  • Hamlett, N. U., and B. A. Blaylock. 1969. Synthesis of acetate from mathanol. Bacteriol. Proc. 207.

    Google Scholar 

  • Hansen, B., M. Bokranz, P. Schönheit, and A. Kroger. 1988. ATP formation coupled to caffeate reduction by H2 in Acetobacterium woodii NZval6. Arch. Microbiol. 150:447–451.

    Article  CAS  Google Scholar 

  • Heijthuijsen, J. H. F. G., and T. A. Hansen. 1986. Interspecies hydrogen transfer in co-cultures of methanol-utilizing acidogens and sulfate-reducing or methanogenic bacteria. FEMS Microbiol. Ecol. 38:57–64.

    Article  CAS  Google Scholar 

  • Hsu, T., M. F. Lux, and H. L. Drake. 1990. Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum. J. Bacteriol. 172:5901–5907.

    PubMed  CAS  Google Scholar 

  • Kane, M. D., and J. A. Breznak. 1991. Acetonema longum gen. nov. sp. nov., an H2/ CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch. Microbiol. 156:91–98.

    Article  PubMed  CAS  Google Scholar 

  • Kane, M. D., A. Brauman, and J. A. Breznak. 1991. Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus. Arch. Microbiol. 156:99–104.

    Article  CAS  Google Scholar 

  • Kelly, D. P., and N. A. Smith. 1990. Organic sulfur compounds in the environment. In: Advances in Microbial Ecology, K. C. Marshall (ed.), Vol. 11, pp. 345–385. Plenum Press, New York.

    Google Scholar 

  • Kerby, R., W. Niemczura, and J. G. Zeikus. 1983. Single-carbon catabolism in acetogens: analysis of carbon flow in Acetobacterium woodii and Butyribacterium methylotrophicum by fermentation and 13C nuclear magnetic resonance measurement. J. Bacteriol. 155:1208–1218.

    PubMed  CAS  Google Scholar 

  • Kiene, R. P., and D. G. Capone. 1988. Microbiol transformations of methylated sulfur compounds in anoxic salt marsh sediments. Microb. Ecol. 15:275–291.

    Article  CAS  Google Scholar 

  • King, G. M., M. J. Klug, and D. R. Lovley. 1983. Metabolism of acetate, methanol, and methylated amines in intertidal sediments of Lowes Cove, Maine. Appl. Environ. Microbiol. 45:1848–1853.

    PubMed  CAS  Google Scholar 

  • Kreft, J.-U., and B. Schink. 1993. Demethylation and degradation of phenylmethylethers by the sulfide-methylating homoacetogenic bacterium strain TMBS4. Arch. Microbiol. 159:308–315.

    Article  CAS  Google Scholar 

  • Kreikenbohm, R., and N. Pfennig. 1985. Anaerobic degradation of 3.4.5-trimethoxybenzoate by a defined mixed culture of Acetobacterium woodii, Pelobacter acidigallici, and Desulfobacter postgatei. FEMS Microbiol. Ecol. 31:29–38.

    Article  CAS  Google Scholar 

  • Kristjansson, J. K., and P. Schönheit. 1983. Why do sulfate-reducing bacteria outcompete methanogenic bacteria for substrates? Oecologia (Berlin) 60:264–266.

    Article  Google Scholar 

  • Krumboeck, M., and R. Conrad. 1991. Metabolism of position-labelled glucose in anoxic methanogenic paddy soil and lake sediment. FEMS Microbiol. Ecol. 85:247–256.

    Article  CAS  Google Scholar 

  • Krumholz, L. R., and M. P. Bryant. 1985. Clostridium pfennigii sp. nov. uses methoxyl groups of mono-benzenoids and produces butyrate. Int. J. Syst. Bacteriol. 35:454–456.

    Article  CAS  Google Scholar 

  • Krumholz, L. R., and M. P. Bryant. 1986. Syntrophococcus sucromutans sp. nov. gen. nov. uses carbohydrates as electron donors and formate, monobezenoids or Methanobrevibacter as electron acceptor systems. Arch. Microbiol. 143:313–318.

    Article  CAS  Google Scholar 

  • Lajoie, S. F., S. Bank. T. L. Miller, and M. J. Wolin. 1988. Acetate production from hydrogen and [13C] carbon dioxide by the microflora of human feces. Appl. Environ. Microbiol. 54:2723–2727.

    PubMed  CAS  Google Scholar 

  • Lee, M. J., and S. H. Zinder. 1988a. Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl. Environ. Microbiol. 54:124–129.

    PubMed  CAS  Google Scholar 

  • Lee, M. J., and S. H. Zinder. 1988b. Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenically and in a syntrophic acetateoxidizing coculture. Arch. Microbiol. 150:513–518.

    Article  CAS  Google Scholar 

  • Lee, M. J., and S. H. Zinder. 1988c. Hydrogen partial pressures in a thermophilic acetateoxidizing methanogenic coculture. Appl. Environ. Microbiol. 154:1457–1461.

    Google Scholar 

  • Leigh, J. A., F. Mayer, and R. S. Wolfe. 1981. Acetogenium kivui, a new thermophilic hydrogen-oxydizing, acetogenic bacterium. Arch. Microbiol. 129:275–280.

    Article  CAS  Google Scholar 

  • Lendenmann, U., M. Snozzi, and T. Egli. 1992. Simultaneous utilization of diauxic sugar mixtures by Escherichia coli, Abstract P2-04-13. 6th International Symposium on Microbial Ecology, Barcelona, Spain.

    Google Scholar 

  • Le Ruyet, P., H. C. Dubourgier, and G. Albagnac. 1984. Homoacetogenic fermentation of cellulose by a coculture of Clostridium thermocellum and Acetogenium kivui. Appl. Environ. Microbiol. 48:893–894.

    Google Scholar 

  • Lorowitz, W. H., and M. P. Bryant. 1984. Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl. Environ. Microbiol. 47:961–964.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and M. J. Klug. 1983. Methanogenesis from methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in the sediments of a eutrophic lake. Appl. Environ. Microbiol. 45:1310–1315.

    PubMed  CAS  Google Scholar 

  • Lux, M. F., and H. L. Drake. 1992. Reexamination of the metabolic potentials of the acetogens. Clostridium aceticum and Clostridium formicoaceticum: chemolithoautotrophic and aromatic-dependent growth. FEMS Microbiol. Lett. 95:49–56.

    Article  CAS  Google Scholar 

  • Lynd, L. H., R. Kerby, and J. G. Zeikus. 1982. Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum. J. Bacteriol. 149:255–2

    PubMed  CAS  Google Scholar 

  • Lynd, L. H., and J. G. Zeikus. 1983. Metabolism of H2-CO2, methanol, and glucose by Butyribacterium methylotrophicum. J. Bacteriol. 153:1415–1423.

    PubMed  CAS  Google Scholar 

  • Matthies, C., A. Freiberger, and H. L. Drake. 1993. Fumarate dissimilation and differential reductant flow by Clostridium formicoaceticum and Clostridium aceticum. Arch. Microbiol. 160:273–278.

    Article  CAS  Google Scholar 

  • Möller, B., R. Oßmer, B. H. Howard, G. Gottschalk, and H. Hippe. 1984. Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec, nov., Arch. Microbiol. 139:388–396.

    Article  Google Scholar 

  • Moore, W. E. C., and E. P. Cato. 1965. Synonymy of Eubacterium limosum and Butyribacterium rettgeri: Butyribacterium limosum comb nov. Int. Bull. Bacteriol. Nomenclature Taxonomy 15:69–80.

    Article  Google Scholar 

  • Müller, E., K. Fahlbusch, R. Walther, and G. Gottschalk. 1981. Formation of N,N-dimethylglycine, acetic acid, and butyric acid from betaine by Eubacterium limosum. Appl. Environ. Microbiol. 42:439–445.

    PubMed  Google Scholar 

  • Ollivier, B., R. Cord-Ruwisch, A. Lombardo, and J. L. Garcia. 1985. Isolation and characterization of Sporomusa acidovorans sp. nov., a methylotrophic homoacetogenic bacterium. Arch. Microbiol. 142:307–310.

    Article  CAS  Google Scholar 

  • Parekh, M., E. S. Keith, S. L. Daniel, and H. L. Drake. 1992. Comparative evaluation of the metabolic potentials of different strains of Peptostreptococcus productus: utilization and transformation of aromatic compounds. FEMS Microbiol. Lett. 94:69–74.

    Article  CAS  Google Scholar 

  • Patel, B. K. C., C. Monk, H. Littleworth, H. W. Morgan, and R. M. Daniel. 1987. Clostridium fervidus (sic!) sp. nov., a new chemoorganotrophic acetogenic thermophile. Int. J. Syst. Bacteriol. 37:123–126.

    Article  CAS  Google Scholar 

  • Pfennig, N. 1978. Rhodocycluspurpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12 requiring member of the family Rhodospirillaceae. Int. J. Syst. Bacteriol. 28:283–288.

    Article  CAS  Google Scholar 

  • Phelps, T. J., and J. G. Zeikus. 1984. Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake. Appl. Environ. Microbiol. 48:1088–1095.

    PubMed  CAS  Google Scholar 

  • Prévot, A. R. 1938. Étude de systématique bactérienne. Ann. Inst. Pasteur (Paris) 60:285–307.

    Google Scholar 

  • Prins, R. A., and A. Lankhorst. 1977. Synthesis of acetate from CO2 in the cecum of some rodents. FEMS Microbiol. Lett. 1:255–258.

    Article  CAS  Google Scholar 

  • Robinson, J. A., and J. H. Tiedje. 1984. Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch. Microbiol. 137:26–32.

    Article  CAS  Google Scholar 

  • Savage, M. D., and H. L. Drake. 1986. Adaptation of the acetogen Clostridium thermoautotrophicum to minimal medium. J. Bacteriol. 165:315–318.

    PubMed  CAS  Google Scholar 

  • Schink, B. 1984. Clostridium magnum sp. nov., a non-autotrophic homoacetogenic bacterium. Arch. Microbiol. 137:250–255.

    Article  CAS  Google Scholar 

  • Schink, B. 1987. Ecology of Crmetabolizing anaerobes. In: Microbial Growth on C 1 Compounds, H. W. van Verseveld and J. A. Duine (eds.), pp. 81–85. Martinus Nijhoff Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Schink, B. 1990. Conservation of small amounts of energy in fermenting bacteria. In: Biotechnology in Focus 2, R. K. Finn and P. Präve (eds.), pp. 63–89. Hanser, Munich.

    Google Scholar 

  • Schink, B. 1991a. Syntrophism among prokaryotes. In: The Prokaryotes, 2nd ed., A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.), Chapter 11, pp. 276–299. Springer-Verlag, New York.

    Google Scholar 

  • Schink, B. 1991b. The genus Pelobacter. In: The Prokaryotes, 2nd ed., A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.), Chapter 186, pp. 3393–3399. Springer-Verlag, New York.

    Google Scholar 

  • Schink, B., and M. Bomar. 1991. The genera Acetobacterium, Acetogenium, Acetoanaerobium, and Acetitomaculum. In: The Prokaryotes, 2nd ed., A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer (eds.), Chapter 87, pp. 1925–1936. Springer-Verlag, New York.

    Google Scholar 

  • Schink, B., and N. Pfennig. 1982. Fermentation of trihydroxybenzenes by Pelobacter acidigallicigen. nov. sp. nov., anew strictly anaerobic, Gram-negative, nonsporeforming bacterium. Arch. Microbiol. 133:195–201.

    Article  CAS  Google Scholar 

  • Schink, B., and M. Stieb. 1983. Fermentative degradation of polyethylene glycol by a strictly anaerobic, nonsporeforming bacterium, Pelobacter venetianus sp. nov. Appl. Environ. Microbiol 45:1905–1913.

    PubMed  CAS  Google Scholar 

  • Schramm, E., and B. Schink. 1991. Ether-cleaving enzyme and diol dehydratase involved in anaerobic polyethylene glycol degradation by an Acetobacterium sp. Biodegradation 2:71–79.

    Article  PubMed  CAS  Google Scholar 

  • Schuppert, B., and B. Schink. 1990. Fermentation of methoxyacetate to glycolate and acetate by newly isolated strains of Acetobacterium sp. Arch. Microbiol. 153:200–204.

    Article  CAS  Google Scholar 

  • Seifritz, C., S. L. Daniel, A. Gößner, H. L. Drake. 1993. Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum. J. Bacteriol. 175:8008–8013.

    PubMed  CAS  Google Scholar 

  • Seitz, H.-J., B. Schink, and R. Conrad. 1988. Thermodynamics of hydrogen metabolism in methanogenic cocultures degrading ethanol or lactate. FEMS Microbiol. Lett. 55:119–124.

    Article  CAS  Google Scholar 

  • Sharak-Genthner, B. R., and M. P. Bryant. 1982. Growth of Eubacterium limosum with carbon monoxide as the energy source. Appl. Environ. Microbiol. 43:70–74.

    Google Scholar 

  • Sharak-Genthner, B. R., and M. P. Bryant. 1987. Additional characteristics of one-carbon-compound utilization by Eubacterium limosum and Acetobacterium woodii. Appl. Environ. Microbiol. 53:471–476.

    PubMed  CAS  Google Scholar 

  • Sharak-Genthner, B. R., C. L. Davis, and M. P. Bryant. 1981. Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol and H2-CO2-utilizing species. Appl. Environ. Microbiol. 42:12–19.

    Google Scholar 

  • Sleat, R., R. A. Man, and R. Robinson. 1985. Acetoanaerobium noterae gen. nov. sp. nov.: an anaerobic bacterium that forms acetate from H2 and CO2. Int. J. Syst. Bacteriol. 35:10–15.

    Article  Google Scholar 

  • Stackebrandt, E., H. Pohla, R. Kroppenstedt, H. Hippe, and C. R. Woese. 1985. 16S rRNA analysis of Sporomusa, Selenomonas, and Megasphaera: on the phylogenetic origin of Gram-positive eubacteria. Arch. Microbiol. 143:270–276.

    Article  CAS  Google Scholar 

  • Strohhäcker, J., and B. Schink. 1991. Energetic aspects of malate and lactate fermentation by Acetobacterium malicum. FEMS Microbiol. Lett. 90:83–88.

    Article  Google Scholar 

  • Stromeyer, S. A., W. Winkelbauer, H. Kohler, A. Cook, and Th. Leisinger. 1991. Dichloromethane utilized by an anaerobic mixed culture: acetogenesis and methanogenesis. Biodegradation 2:129–137.

    Article  PubMed  CAS  Google Scholar 

  • Stromeyer, S. A., K. Stumpf, A. M. Cook, and Th. Leisinger. 1992. Anaerobic degradation of tetrachloromethane by Acetobacterium woodii. Biodegradation 3:113–123.

    Article  CAS  Google Scholar 

  • Stupperich, E., P. Aulkemeyer, and C. Eckerskorn. 1992. Purification and characterization of a methanol-induced cobamide-containing protein from Sporomusa ovata. Arch. Microbiol 158:370–373.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., and N. Pfennig. 1988. Fermentation of 2-methoxyethanol by Acetobacterium malicum sp. nov. and Pelobacter venetianus. Arch. Microbiol. 149:181–187.

    Article  CAS  Google Scholar 

  • Tanner, R. S., E. Stackebrandt, G. E. Fox, and C. R. Woese. 1981. A phylogenetic analysis of Acetobacterium woodii, Clostridium barkeri, Clostridium butyricum, Clostridium lituseburense, Eubacterium limosum, and Eubacterium tenue. Curr. Microbiol. 5:35–38.

    Article  Google Scholar 

  • Tanner, R. S., L. M. Miller, and D. Yang. 1993. Clostridium Ijungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int. J. Syst. Bacteriol. 43:232–236.

    Article  PubMed  CAS  Google Scholar 

  • Tasaki, M., Y. Kamagota, K. Nakamura, and E. Mikami. 1992. Utilization of methoxylated benzoates and formation of intermediates by Desulfotomaculum thermobenzoicum in the presence or absence of sulfate. Arch. Microbiol. 157:209–212.

    Article  PubMed  CAS  Google Scholar 

  • Thauer, R. K., D. Möller-Zinkhan, and A. M. Spormann. 1989. Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu. Rev. Microbiol. 43:43–67.

    Article  PubMed  CAS  Google Scholar 

  • Thiele, J., and J. G. Zeikus. 1988a. Control of interspecies electron flow during anaerobic digestion: The role of formate versus hydrogen transfer during syntrophic methanogenesis in flocs. Appl. Environ. Microbiol. 54:20–29.

    PubMed  CAS  Google Scholar 

  • Thiele, J., and J. G. Zeikus. 1988b. Interactions between hydrogen-and formate-producing bacteria and methanogens during anaerobic digestion. In: Handbook on Anaerobic Fermentations, L. E. Erickson, and D. Y.-C. Fung (eds.), pp. 537–595. Marcel Dekker Inc., New York.

    Google Scholar 

  • Traunecker, J., A. Preuß, and G. Diekert. 1991. Isolation and characterization of a methyl chloride utilizing, strictly anaerobic bacterium. Arch. Microbiol. 156:416–421.

    Article  CAS  Google Scholar 

  • Tschech, A., and N. Pfennig. 1984. Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch. Microbiol. 137:163–167.

    Article  CAS  Google Scholar 

  • Wagener, S., and B. Schink. 1988. Fermentative degradation of nonionic surfactants by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria. Appl. Environ. Microbiol. 54:561–565.

    PubMed  CAS  Google Scholar 

  • Widdel, F., and N. Pfennig. 1981. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov. sp. nov. Arch. Microbiol. 129:395–400.

    Article  PubMed  CAS  Google Scholar 

  • Widdel, F., G. W. Kohring, and F. Mayer. 1983. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch. Microbiol. 134:286–294.

    Article  CAS  Google Scholar 

  • Wiegel, J., M. Braun, and G. Gottschalk. 1981. Clostridium thermoautotrophicum species novum (sic!), a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr. Microbiol. 5:255–260.

    Article  CAS  Google Scholar 

  • Wieringa, K. T. 1936. Over net verdwijnen van waterstof en koolzuur onder anaerobe voorwarden. Antonie van Leeuwenhoek J. Microbiol. Serol. 3:263–273.

    Article  Google Scholar 

  • Wieringa, K. T. 1940. The formation of acetic acid from CO2 and H2 by anaerobic sporeforming bacteria. Antonie van Leeuwenhoek J. Microbiol. Serol. 6:251–262.

    Article  Google Scholar 

  • Winfrey, M. R., and D. M. Ward. 1983. Substrates for sulfate reduction and methane production in intertidal sediments. Appl. Environ. Microbiol. 45:193–199.

    PubMed  CAS  Google Scholar 

  • Winter, J., and R. S. Wolfe. 1979. Complete degradation of carbohydrate to carbon dioxide and methane by syntrophic cultures of Acetobacterium woodii and Methanosarcina barkeri. Arch. Microbiol. 121:97–102.

    Article  PubMed  CAS  Google Scholar 

  • Winter, J., and R. S. Wolfe. 1980. Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens. Arch. Microbiol. 124:73–79.

    Article  PubMed  CAS  Google Scholar 

  • Zehnder, A. J. B., and W. Stumm. 1988. Geochemistry and biogeochemistry of anaerobic habitats. In: Biology of Anaerobic Microorganisms, A. J. B. Zehnder (ed.), pp. 1–38. Wiley, New York.

    Google Scholar 

  • Zehnder, A. J. B., K. Ingvorsen, and T. Marti. 1982. Microbiology of methane bacteria. In: Anaerobic Digestion 1981, D. E. Hughes, D. A. Stafford, B. I. Wheatley, W. Baader, G. Lettinga, E. J. Nyns, and W. Verstraete (eds.), pp. 45–68 Elsevier, Amsterdam.

    Google Scholar 

  • Zeikus, J. G., L. H. Lynd, T. E. Thompson, J. A. Krzycki, P. J. Weimer, and P. W. Hegge. 1980. Isolation and characterization of a new, methylotrophic acidogenic anaerobe, the Marburg strain. Curr. Microbiol. 3:381–386.

    Article  CAS  Google Scholar 

  • Zeikus, J. G., and M. Winfrey. 1976. Temperature limitation of methanogenesis in aquatic sediments. Appl. Environ. Microbiol. 31:99–107.

    PubMed  CAS  Google Scholar 

  • Zhilina, T. N., and G. A. Zavarzin. 1990a. A new extremely halophilic homoacetogenic bacterium Acetohalobium arabaticum, gen. nov. sp. nov. Dokl. Akad. Nauk SSSR 311:745–747.

    CAS  Google Scholar 

  • Zhilina, T. N., and G. A. Zavarzin. 1990b. Extremely halophilic, methylotrophic, anaerobic bacteria. FEMS Microbiol. Rev. 87:315–322.

    Article  CAS  Google Scholar 

  • Zinder, S. H., and M. Koch. 1984. Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch. Microbiol. 138:263–272.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Chapman & Hall

About this chapter

Cite this chapter

Schink, B. (1994). Diversity, Ecology, and Isolation of Acetogenic Bacteria. In: Drake, H.L. (eds) Acetogenesis. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1777-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1777-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5716-2

  • Online ISBN: 978-1-4615-1777-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics