Skip to main content

CO Dehydrogenase and the Central Role of This Enzyme in the Fixation of Carbon Dioxide by Anaerobic Bacteria

  • Chapter
Acetogenesis

Part of the book series: Chapman & Hall Microbiology Series ((CHMBS))

Abstract

Our planet requires a continual source of fixed carbon because heterotrophic organisms produce energy by oxidizing the organic carbon to CO2, thereby depleting the organic carbon. Reconversion of CO2 to organic carbon occurs by a reductive process called CO2 fixation. Many strict anaerobes perform CO2 fixation by a pathway which is called the reductive acetyl-CoA or the Wood/ Ljungdahl pathway (see Chapter 1). Formation of acetyl-CoA via the Wood/ Ljungdahl pathway occurs in many anaerobic environments including marine and freshwater sediments, in the soil, and in landfills and waste-treatment sites. Autotrophic anaerobes are also common in the rumen of cows, horses, and sheep, and in the hindgut of termites and the large intestine of humans (Breznak and Kane, 1990; Breznak and Switzer, 1986; Lajoie et al., 1988) (see Part IV of this book).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbanat, D. R., and J. G. Ferry. 1990. Synthesis of acetyl-coenzyme A by carbon monoxide dehydrogenase complex from acetate-grown Methanosarcina thermophila. J. Bacteriol. 172:7145–7150.

    PubMed  CAS  Google Scholar 

  • Adams, M. W. W. 1987. The mechanisms of H2 activation and CO binding by hydrogenase I and hydrogenase II of Clostridium pasteurianum. J. Biol. Chem. 262:15054–15061.

    PubMed  CAS  Google Scholar 

  • Anderson, M. E., V. J. DeRose, B. M. Hoffmann, and P. A. Lindahl. 1993. Identification of a cyanide binding site in CO dehydrogenase from Clostridium thermoaceticum using EPR and ENDOR spectroscopies. J. Am. Chem. Soc. 115:12204–12205.

    Article  CAS  Google Scholar 

  • Banerjee, R. V., S. R. Harder, S. W. Ragsdale, and R. G. Matthews. 1990. Mechanism of reductive activation of cobalamin-dependent methionine synthase: an electron paramagnetic resonance spectroelectrochemical study. Biochemistry 29:1129–1135.

    Article  PubMed  CAS  Google Scholar 

  • Barker, H. A., and M. D. Kamen. 1945. Carbon dioxide utilization in the synthesis of acetic acid by Clostridium thermoaceticum. Proc. Natl. Acad. Sci. USA 31:219–225.

    Article  PubMed  CAS  Google Scholar 

  • Bastian, N. R., G. Diekert, E. G. Niederhoffer, B.-K. Teo, C. P. Walsh, and W. H. Orme-Johnson. 1988. Nickel and iron EXAFS of carbon monoxide dehydrogenase from Clostridium thermoaceticum. J. Am. Chem. Soc. 110:5581–5582.

    Article  CAS  Google Scholar 

  • Bobik, T. A., K. D. Olson, K. M. Noll, and R. S. Wolfe. 1987. Evidence that the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate is a product of the methylreductase reaction in Methanobacterium. Biochem. Biopohys. Res. Commun. 149:455–460.

    Article  CAS  Google Scholar 

  • Breznak, J. A., and M. D. Kane. 1990. Microbial H2/CO2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol. Rev. 87:309–314.

    Article  CAS  Google Scholar 

  • Breznak, J. A., and J. M. Switzer. 1986. Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl. Environ. Microbiol. 52:623–630.

    PubMed  CAS  Google Scholar 

  • Chen, E., and M. R. Chance. 1990. Nanosecond transient absorption spectroscopy of coenzyme B12. Quantum yields and spectral dynamics. J. Biol. Chem. 265:12987–12990.

    PubMed  CAS  Google Scholar 

  • Ciurli, S., S.-B. Yu, R. H. Holm, K. K. P. Srivastava, and E. Münck. 1990. Synthetic NiFe3Q4 cubane-type clusters (S = 3/2) by reductive rearrangement of linear [Fe3Q4 (SEt)4]3- (Q = S, Se). J. Am. Chem. Soc. 112:8169.

    Article  CAS  Google Scholar 

  • Ciurli, S., P. K. Ross, M. J. Scott, S.-B. Yu, and R. H. Holm. 1992. Synthetic nickel-containing heterometal cubane-type clusters with NiFe3Q4 cores (Q = S, Se). J. Am. Chem. Soc. 114:5415–5423.

    Article  CAS  Google Scholar 

  • Colby, J., H. Dalton, and R. Whittenbury. 1979. Biological and biochemical aspects of microbial growth in C1 compounds. Annu. Rev. Microbiol. 33:481–517.

    Article  PubMed  CAS  Google Scholar 

  • Conover, R. C., J.-B. Park, M. W. Adams, and M. K. Johnson. 1990. The formation and properties of a NiFe3S4 cluster in Pyrococcus furiosus ferredoxin. J. Am. Chem. Soc. 112:4562–4564.

    Article  CAS  Google Scholar 

  • Cramer, S. P., M. K. Eidsness, W.-H. Pan, T. A. Morton, S. W. Ragsdale, D. V. DerVartanian, and L.G. Ljungdahl. 1987. X-ray absorption spectroscopic evidence for a unique nickel site in Clostridium thermoaceticum carbon monoxide dehydrogenase. Inorg. Chem. 26:2477–2479.

    Article  CAS  Google Scholar 

  • Daniel, S. L., T. Hsu, S. I. Dean, and H. L. Drake. 1990. Characterization of the H2-and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J. Bacteriol. 172:4464–4471.

    PubMed  CAS  Google Scholar 

  • Diekert, G. B. and R. K. Thauer. 1978. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J. Bacteriol. 136:597–606.

    PubMed  CAS  Google Scholar 

  • Diekert, G. B., E. G. Graf, and R. K. Thauer. 1979. Nickel requirement for carbon monoxide dehydrogenase formation in Clostridium thermoaceticum. Arch. Microbiol. 122:117–120.

    Article  CAS  Google Scholar 

  • Diekert, G., and R. K. Thauer. 1980. The effect of nickel on carbon monoxide dehydrogenase formation in Clostridium thermoaceticum and Clostridium formicoaceticum. FEMS Microbiol. Lett. 7:187–189.

    Article  CAS  Google Scholar 

  • Diekert, G., and M. Ritter. 1983. Purification of the nickel protein carbon monoxide dehydrogenase of Clostridium thermoaceticum. FEBS Lett. 151:41–44.

    Article  PubMed  CAS  Google Scholar 

  • Downs, D. M., P. W. Ludden, and V. K. Shah. 1990. Synthesis of the iron-molybdenum cofactor of nitrogenase is inhibited by a low-molecular-weight metabolite of Klebsiella pneumoniaeFEBS Lett.. J. Bacteriol. 172:6084–6089.

    PubMed  CAS  Google Scholar 

  • Drake, H. L., S.-I. Hu, and H. G. Wood. 1980. Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermoaceticum. J. Biol. Chem. 255:7174–7180.

    PubMed  CAS  Google Scholar 

  • Drake, H. L., S.-I. Hu, and H. G. Wood. 1981a. Purification of five components from Clostridium thermoacticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. Properties of phosphotransacetylase. J. Biol. Chem. 256: 11137–11144.

    PubMed  CAS  Google Scholar 

  • Drake, H. L., S.-I. Hu, and H. G. Wood. 1981b. The synthesis of acetate from carbon monoxide plus methyltetrahydrofolate and the involvement of the nickel enzyme, CO dehydrogenase. Abstr. K42, p. 144. Abstr. Ann. Meet. Am. Soc. Microbiol. 1981.

    Google Scholar 

  • Ellermann, J., R. Hedderich, R. Böcher, and R. K. Thauer. 1988. The final step in methane formation. Investigations with highly purified methyl-CoM reductase (component C) from Methanobacterium thermoautotrophicum (strain Marburg). Eur. J. Biochem. 172:669–677.

    Article  PubMed  CAS  Google Scholar 

  • Emptage, M. H., J.-L. Dreyer, M. C. Kennedy, and H. Beinert. 1983. Optical and EPR characterization of different species of active and inactive aconitase J. Biol. Chem. 258: 11106–11111.

    PubMed  CAS  Google Scholar 

  • Ensign, S. A., M. R. Hyman, and P. W. Ludden. 1989. Nickel-specific, slow binding inhibition of carbon monoxide dehydrogenase from Rhodospirillum rubrum by cyanide. Biochemistry 28:4973–4979.

    Article  PubMed  CAS  Google Scholar 

  • Ensign, S.A., and P. W. Ludden. 1991. Characterization of the CO oxidation/H2 evolution system of Rhodospirillum rubrum. Role of a 22 kDa iron-sulfur protein in mediating electron transfer between carbon monoxide dehydrogenase and hydrogenase. J. Biol. Chem. 266:18395–18403.

    PubMed  CAS  Google Scholar 

  • Fan, C., C. M. Gorst, S. W. Ragsdale, and B. M. Hoffman. 1991. Characterization of the Ni-Fe-C complex formed by reaction of carbon monoxide with the carbon monoxide dehydrogenase from Clostridium thermoaceticum by Q-band ENDOR. Biochemistry 30:431–435.

    Article  PubMed  CAS  Google Scholar 

  • Ferry, J. G. 1992. Methane from acetate. J. Bacteriol. 174:5489–5495.

    PubMed  CAS  Google Scholar 

  • Fontaine, F. E., W. H. Peterson, E. McCoy, M. J. Johnson, and G. T. Ritter. 1942. A new type of glucose fermentation by Clostridium thermoaceticum. J. Bacteriol. 43:701–715.

    PubMed  CAS  Google Scholar 

  • Forster, D. J. 1976). On the mechanism of a rhodium-complex-catalyzed carbonylation of methanol to acetic acid. J. Am. Chem. Soc. 98: 846–848.

    Google Scholar 

  • Forster, D. J. 1979. Mechanistic pathways in the catalytic carbonylation of methanol by rhodium and iridium complexes. Adv. Organomet. Chem. 17:255–266.

    Article  CAS  Google Scholar 

  • Fuchs, G. 1986. CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol. Rev. 39:181–213.

    Article  CAS  Google Scholar 

  • Gorst, C. M., and S. W. Ragsdale. 1991. Characterization of a Ni-Fe-CO complex of CO dehydrogenase as a catalytically competent intermediate in the pathway of acetyl-CoA synthesis. J. Biol. Chem. 266:20687–20693.

    PubMed  CAS  Google Scholar 

  • Grate, J. H., and G. N. Schrauzer. 1979. Sterically induced, spontaneously dealkylation of secondary alkylcobalamins due to axial base coordination and conformational changes of the corrin ligand. J. Am. Chem. Soc. 101:4601–4611.

    Article  CAS  Google Scholar 

  • Harder, S. A., W.-P. Lu, B. F. Feinberg, and S. W. Ragsdale. 1989. Spectroelectrochemical studies of the corrinoid/iron-sulfur protein from Clostridium thermoaceticum. Biochemistry 28:9080–9087.

    Article  PubMed  CAS  Google Scholar 

  • Hogenkamp, H. P. C., G. T. Bratt, and A. T. Kotchevar. 1987. Reaction of alkylcobalamins with thiols. Biochemistry 26:4723–4727.

    Article  PubMed  CAS  Google Scholar 

  • Hu, S.-L., H. L. Drake, and H. G. Wood. 1982. Synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes from Clostridium thermoaceticum. J. Bacteriol. 149:440–448.

    PubMed  CAS  Google Scholar 

  • Hu, S.-L., E. Pezacka, and H. G. Wood. 1984. Acetate synthesis from carbon monoxide by Clostridium thermoaceticum. Purification of the corrinoid protein. J. Biol. Chem. 259:8892–8897.

    PubMed  CAS  Google Scholar 

  • Hyman, M. R., S. A. Ensign, D. J. Arp, and P. W. Ludden. 1989. Carbonyl sulfide inhibition of CO dehydrogenase from Rhodospirillum rubrum. Biochemistry 28:6821–6826.

    Article  PubMed  CAS  Google Scholar 

  • Jablonski, P. E., W.-P. Lu, S. W. Ragsdale, and J. G. Ferry. 1993. Characterization of the metal centers of the corrinoid/iron-sulfur component of the CO dehydrogenase enzyme complex from Methanosarcina thermophila by EPR spectroscopy and spectroelectrochemistry. J. Biol Chem. 268:325–329.

    PubMed  CAS  Google Scholar 

  • Jetten, M. S. M., A. J. Pierik, and W. R. Hagen. 1991. EPR characterization of a high-spin system in carbon monoxide dehydrogenase from Methanothrix soehngenii. Eur. J. Biochem. 202:1291–1297.

    Article  PubMed  CAS  Google Scholar 

  • Jones, C. W. 1982. Bacterial respiration and photosynthesis. In: Aspects of Microbiology, vol. 5, J. A. Cole and C. J. Knowles (eds.), p. 41. Thomas Nelson and Sons, Ltd., Hong Kong.

    Google Scholar 

  • Jones, W. J., D. P. Nagle, Jr., and W. B. Whitman. 1987. Methanogens and the diversity of archaebacteria. Microbiol. Rev. 51:135.

    PubMed  CAS  Google Scholar 

  • Kerby, R., and J. G. Zeikus. 1983. Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source. Curr. Microbiol. 8:27–30.

    Article  CAS  Google Scholar 

  • Kerby, R. L., S. S. Hong, S. A. Ensign, L. J. Coppoc, P. W. Ludden, and G. P. Roberts. 1992. Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system. J. Bacteriol. 174:5284–5294.

    PubMed  CAS  Google Scholar 

  • Kräutler, B. 1987. Thermodynamic trans-effects of the nucleotide base in the B12 coenzymes. Helv. Chim. Acta 70:1268–1278.

    Article  Google Scholar 

  • Krzycki, J. A., L. E. Mortenson, and R. C. Prince. 1989. Paramagnetic centers of carbon monoxide dehydrogenase from acetoclastic Methanosarcina barkeri. J. Biol. Chem. 264:7217–7221.

    PubMed  CAS  Google Scholar 

  • Kuhlmann, E. J., and J. J. Alexander. 1980. Carbon monoxide insertion into transition metal-carbon sigma-bonds. Coord. Chem. Rev. 33:195–225.

    Article  CAS  Google Scholar 

  • Kumar, M., S. W. Ragsdale. 1992. Characterization of the CO binding site of carbon monoxide dehydrogenase from Clostridium thermoaceticum by infrared spectroscopy. J. Am. Chem. Soc. 114:8713–8715.

    Article  CAS  Google Scholar 

  • Kumar, M., W.-P. Lu, L. Liu, and S. W. Ragsdale. 1993. Kinetic evidence that CO dehydrogenase catalyzes the oxidation of CO and the synthesis of acetyl-CoA at separate metal centers. J. Am. Chem. Soc. 115:11646–11647.

    Article  CAS  Google Scholar 

  • Lajoie, S. F., S. Bank, T. L. Miller, and M. J. Wolin. 1988. Acetate production from hydrogen and [13C]carbon dioxide by the microflora of human feces. Appl. Environ. Microbiol. 54:2723–2727.

    PubMed  CAS  Google Scholar 

  • Lapado, J., and W. B. Whitman. 1990. Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripauludis. Proc. Natl. Acad. Sci. USA 87:5598–5602.

    Article  Google Scholar 

  • Lebertz, H., H. Simon, L. F. Courtney, S. J. Benkovic, L. D. Zydowsky, K. Lee and H. G. Ross. 1987. Stereochemistry of acetic acid formation from 5-methyl-tetrahydrofolate by Clostridium thermoaceticum. J. Am. Chem. Soc. 109:3173–3174.

    Article  CAS  Google Scholar 

  • Lee, M. H., S. B. Mulrooney, M. J. Renner, Y. Markowicz, and R. P. Hausinger. 1992. Klebsieila aerogenes urease gene cluster: sequences of ureD and demonstration that four accessory genes (ureD, ureE, ureF, and ureG) are involved in nickel metallocenter biosynthesis. J. Bacteriol. 174:4324–4330.

    PubMed  CAS  Google Scholar 

  • Lenn, N. D., M. T. Stankovich, H.-W. Liu. 1990. Regulation of the redox potential of general acyl-CoA dehydrogenase by substrate binding. Biochemistry 29:3709.

    Article  PubMed  CAS  Google Scholar 

  • Lieber, C. M., and N. S. Lewis. 1984. Catalytic reduction of CO2 at carbon electrodes modified with cobalt phthalocyanine. J. Am. Chem. Soc. 106:5033–5034.

    Article  CAS  Google Scholar 

  • Lindahl, P. A., E. Münck, and S. W. Ragsdale. 1990a. CO dehydrogenase from Clostridium thermoaceticum: EPR and electrochemical studies in CO2 and argon atmospheres. J. Biol. Chem. 265:3873–3879.

    PubMed  CAS  Google Scholar 

  • Lindahl, P. A., S. W. Ragsdale, and E. Münck. 1990b. Mössbauer studies of CO dehydrogenase from Clostridium thermoaceticum. J. Biol. Chem. 265:3880–3888.

    PubMed  CAS  Google Scholar 

  • Lu, W.-P., S. R. Harder, and S. W. Ragsdale. 1990. Controlled potential enzymology of methyl transfer reactions involved in acetyl-CoA synthesis by CO dehydrogenase and the corrinoid/iron-sulfur protein. J. Biol. Chem. 265:3124–3133.

    PubMed  CAS  Google Scholar 

  • Lu, W.-P., P. E. Jablonski, J. G. Ferry, and S. W. Ragsdale. 1994. Characterization of the metal centers of the Ni/Fe-S component of the CO dehydrogenase complex from Methanosarcina thermophila by EPR spectroscopy and spectroelectrochemistry. J. Biol. Chem. (in press).

    Google Scholar 

  • Lu, W.-P., I. Schiau, J. R. Cunningham, and S. W. Ragsdale. 1993. Sequence and expression of the gene encoding the corrinoid/iron-sulfur protein from Clostridium thermoaceticum and reconstitution of the recombinant protein to full activity. J. Biol. Chem. 268:5605–5614.

    PubMed  CAS  Google Scholar 

  • Lu, W. P., and S. W. Ragsdale. 1991. Reductive activation of the coenzyme A/acetyl-CoA isotopic exchange reaction catalyzed by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by nitrous oxide and carbon monoxide. J. Biol. Chem. 266: 3554–3564.

    PubMed  CAS  Google Scholar 

  • Meyer, O., and H. G. Schlegel. 1983. Biology of aerobic carbon monoxide-oxidizing bacteria. Ann. Rev. Microbiol. 37:277–310.

    Article  CAS  Google Scholar 

  • Moloy, K. G., and T. J. Marks. 1984. Carbon monoxide activation by organoactinides. A comparative synthetic, thermodynamic, kinetic, and mechanistic investigation of migratory CO insertion into actinide-carbon and actinide-hydrogen bonds to yield n2-acyls and n2-formyls. J. Am. Chem. Soc. 106:7051–7064.

    Article  CAS  Google Scholar 

  • Morton, T., J. A. Runquist, S. W. Ragsdale, T. Shanmugasundaram, H. G. Wood, and L. G. Ljungdahl. 1991. The primary structure of the subunits of CO dehydrogenase/ acetyl-CoA synthase from Clostridium thermoaceticum. J. Biol. Chem. 266:23824–23838.

    PubMed  CAS  Google Scholar 

  • Muhoberac, B. B., D. C. Wharton, L. M. Babcock, P. C. Harrington, and R. G. Wilkins. 1980. EPR spectroscopy of semi-methemerythin. Biochim. Biophys Acta 626:337–347.

    PubMed  CAS  Google Scholar 

  • Pezacka, E., and H. G. Wood. 1984a. Role of carbon monoxide dehydrogenase in the autotrophic pathway used by acetogenic bacteria. Proc. Natl. Acad. Sci. USA 81:6261–6265.

    Article  PubMed  CAS  Google Scholar 

  • Pezacka, E., and H. G. Wood. 1984b. The synthesis of acetyl-CoA by Clostridium thermoaceticum from carbon dioxide, hydrogen, coenzyme A and methyltetrahydrofolate. Arch. Microbiol. 137:63–69.

    Article  PubMed  CAS  Google Scholar 

  • Pezacka, E., and H. G. Wood. 1986. The autotrophic pathway of acetogenic bacteria. Role of CO dehydrogenase disulfide reductase. J. Biol. Chem. 261:1609–1615.

    PubMed  CAS  Google Scholar 

  • Pezacka, E., and H. G. Wood. 1988. Acetyl-CoA pathway of autotrophic growth. Identification of the methyl-binding site of the CO dehydrogenase. J. Biol. Chem. 263:16000–16006.

    PubMed  CAS  Google Scholar 

  • Pratt, J. M. 1982. Coordination chemistry of the B12 dependent isomerase reactions. In: Vitamin B 12, D. Dolphin (ed.), pp. 325–392. Wiley, New York.

    Google Scholar 

  • Qiu, D., M. Kumar, S. W. Ragsdale, and T. Spiro. 1994. Nature’s carbonylation catalyst: Raman spectroscopic evidence that CO binds to iron, not nickel, in carbon monoxide dehydrogenase. Science (in press).

    Google Scholar 

  • Ragsdale, S. W. 1991. Enzymology of the acetyl-CoA pathway of autotrophic CO2 fixation. CRC Crit. Rev. Biochem. Mol. Biol. 26:261–300.

    Article  CAS  Google Scholar 

  • Ragsdale, S. W., J. E. Clark, L. G. Ljungdahl, L. L. Lundie, and H. L. Drake. 1983a. Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfur protein. J. Biol. Chem. 258:2364–2369.

    PubMed  CAS  Google Scholar 

  • Ragsdale, S. W., L. G. Ljungdahl, and D. V. DerVartanian. 1983b. 13C and 61Ni isotope substitution confirm the presence of a nickel(III)-carbon species in acetogenic CO dehydrogenases. Biochem. Biophys. Res. Commun. 115:658–665.

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale, S. W., L. G. Ljungdahl, and D. V. DerVartanian. 1983c. Isolation of the carbon monoxide dehydrogenase from Acetobacterium woodii and comparison of its properties with those of the Clostridium thermoaceticum enzyme. J. Bacteriol. 155: 1224.

    Google Scholar 

  • Ragsdale, S. W., and H. G. Wood. 1985. Acetate biosynthesis by acetogenic bacteria: evidence that carbon monoxide dehydrogenase is the condensing enzyme that catalyzes the final steps of the synthesis. J. Biol. Chem. 260:3970–3977.

    PubMed  CAS  Google Scholar 

  • Ragsdale, S. W., H. G. Wood, and W. E. Antholine. 1985. Evidence that an iron-nickel-carbon complex is formed by reaction of CO with the CO dehydrogenase from Clostridium thermoaceticum. Proc. Natl. Acad. Sci. USA 82:6811–6814.

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale, S. W., P. A. Lindahl, and E. Münck. 1987. Mössbauer, EPR, and optical studies of the corrinoid/Fe-S protein involved in the synthesis of acetyl-CoA by Clostridium thermoaceticum. J. Biol. Chem. 262:14289–14297.

    PubMed  CAS  Google Scholar 

  • Ragsdale, S. W., H. G. Wood, L. G. Ljungdahl, T. Morton, and D. V. DerVartanian. 1988. Nickel in CO dehydrogenase. In: Bioinorganic Chemistry of Nickel, J. R. Lancaster (ed.), pp. 311–332. VCH Publishers, New York.

    Google Scholar 

  • Ramer, S. E., S. A. Raybuck, W. H. Orme-Johnson, and C. T. Walsh. 1989. Kinetic characterization of the [3′-32P]coenzyme A/acetyl coenzyme A exchange catalyzed by a three-subunit form of the carbon monoxide dehydrogenase/acetyl-CoA synthase from Clostridium thermoaceticum. Biochemistry 28:4675–4680.

    Article  PubMed  CAS  Google Scholar 

  • Raybuck, S. A., N. R. Bastian, W. H. Orne-Johnson, and C. T. Walsh. 1988. Kinetic characterization of the carbon monoxide-acetyl-CoA (carbonyl group) exchange activity of the acetyl-CoA synthesizing CO dehydrogenase from Clostridium thermoaceticum. Biochemistry 27:7698–7702.

    Article  PubMed  CAS  Google Scholar 

  • Raybuck, S. A., S. E. Ramer, D. R. Abbanat, J. W. Peters, W. H. Orme-Johnson, J. G. Ferry, and C. T. Walsh. 1991. Demonstration of carbon-carbon bond cleavage of acetyl-CoA by using isotopic exchange catalyzed by the CO dehydrogenase complex from acetate-grown Methanosarcina thermophila. J. Bacteriol. 173:929–932.

    PubMed  CAS  Google Scholar 

  • Riester, J., W. G. Zumft, and P. M. H. Kronek. 1989. Nitrous oxide reductase from Pseudomonas stutzen. Redox properties and spectroscopic characterization of different forms of the multicopper enzyme. Eur. J. Biochem. 178:751–762.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, J. R., W.-P. Lu, and S. W. Ragsdale. 1992. Acetyl-CoA synthesis from methyl-tetrahydrofolate, CO and CoA by enzymes purified from Clostridium thermoaceticum: Attainment of in vivo rates and identification of rate limiting steps. J. Bacteriol. 174:4667–4676.

    PubMed  CAS  Google Scholar 

  • Rouviére, P. E., and R. S. Wolfe. 1988. Novel biochemistry of methanogenesis. J. Biol. Chem. 263:7913–7916.

    PubMed  Google Scholar 

  • Schrauzer, G. N., and J. H. Grate. 1981. Sterically induced, spontaneous Co-C bond homolysis and β-elimination reaction of primary and secondary organocobalamins. J. Am. Chem. Soc. 103:541–546.

    Article  CAS  Google Scholar 

  • Schulman, M., R. K. Ghambeer, L. G. Ljungdahl, and H. G. Wood. 1973. Total synthesis of acetate from CO2. VII. Evidence with Clostridium thermoaceticum that the carboxyl of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO2. J. Biol. Chem. 248:6255–6261.

    PubMed  CAS  Google Scholar 

  • Shanmugasundaram, T., G. K. Kumar, and H. G. Wood. 1988a. Involvement of tryptophan residues at the coenzyme A binding site of carbon monoxide dehydrogenase from Clostridium thermoaceticum. Biochemistry 27:6499–6503.

    Article  PubMed  CAS  Google Scholar 

  • Shanmugasundaram, T., S. W. Ragsdale, and H. G. Wood. 1988b. Role of carbon monoxide dehydrogenase in acetate synthesis by the acetogenic bacterium, Acetobacterium woodii. BioFactors 1:147–152.

    PubMed  CAS  Google Scholar 

  • Shanmugasundaram, T., H. G. Wood. 1992. Interaction of ferredoxin with carbon monoxide dehydrogenase from Clostridium thermoaceticum. J. Biol. Chem. 267:897–900.

    PubMed  CAS  Google Scholar 

  • Shin, W., P. R. Stafford, and P. A. Lindahl. 1992. Redox titrations of carbon monoxide dehydrogenase from Clostridium thermoaceticum. Biochemistry 31:6003–6011.

    Article  PubMed  CAS  Google Scholar 

  • Stavropoulos, P., M. Carrie, M. C. Muetterties, and R. H. Holm. 1990. Reaction sequence related to that of carbon monoxide dehydrogenase (acetyl-CoA synthase): thioester formation mediated at structurally defined nickel centers. J. Am. Chem. Soc. 112:5385–5387.

    Article  CAS  Google Scholar 

  • Stephens, P. J., M.-C. McKenna, S. A. Ensign, D. Bonam, and P. W. Ludden. 1989. Identification of a Ni-and Fe-containing cluster in Rhodospirillum rubrum carbon monoxide dehydrogenase. J. Biol. Chem. 264:16347–16350.

    PubMed  CAS  Google Scholar 

  • Stratz, M., G. Gottschalk, and P. Durre. 1990. Transfer and expression of the tetracycline resistance transposon TN 925 in Acetobacterium woodii. FEMS Microbiol. Lett. 68:171–176.

    Article  Google Scholar 

  • Tan, G. O., S. A. Ensign, S. Ciurli, M. J. Scott, B. Hedman, R. H. Holm, and P. W. Luden. 1992. On the structure of the nickel/iron/sulfur center of the carbon monoxide dehydrogenase from Rhodospirillum rubrum: An x-ray absorption spectroscopy study. Proc. Natl. Acad. Sci. USA 89:4427–4431.

    Article  PubMed  CAS  Google Scholar 

  • Terlesky, K. C., M. J. Barber, D. J. Aceti, and J. G. Ferry. 1987. EPR properties of the Ni-Fe-C center in an enzyme complex with carbon monoxide dehydrogenase activity from acetate-grown Methanosarcina thermophila. Evidence that acetyl-CoA is a physiological substrate. J. Biol. Chem. 262:15392–15395.

    PubMed  CAS  Google Scholar 

  • Tesler, J., M. J. Benecky, M. W. W. Adams, L. E. Mortenson, and B. M. Hoffman. 1987. EPR and electron nuclear double resonance investigation of oxidized hydrogenase II (uptake) from Clostridium pasteurianum W5. Effects of carbon monoxide binding. J. Biol. Chem. 263:6589–6594.

    Google Scholar 

  • Thauer, R. K., D. Möller-Zinkhan, and A. M. Spormann. 1989. Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu. Rev. Microbiol. 43:43–67.

    Article  PubMed  CAS  Google Scholar 

  • Uffen, R. L. 1983. Metabolism of carbon monoxide by Rhodopseudomonas gelatinosa: cell growth and properties of the oxidative system. J. Bacteriol. 155:956–965.

    PubMed  CAS  Google Scholar 

  • Ulman, M., B. Aurian-Blajeni, and M. Halmann. 1987. Fuel from CO2: An electrochemical study. Chemtech. April: 235-239.

    Google Scholar 

  • Waugh, R., and D. H. Boxer. 1986. Pleitropic hydrogenase mutants of Escherichia coli K-12: growth in the presence of nickel can restore hydrogenase activity. Biochimie 68:157–166.

    Article  PubMed  CAS  Google Scholar 

  • Weast, R. C. 1985. Handbook of Chemistry and Physics, 67th ed., p. D–58. CRC Press, Cleveland, OH.

    Google Scholar 

  • Xianjun, C., and J. A. Krzycki. 1991. Acetate-dependent methylation of two corrinoid proteins by acetate in extracts of Methanosarcina barkeri. J. Bacteriol. 173:5439–5448.

    Google Scholar 

  • Yagi, T. 1959. Enzymic oxidation of carbon monoxide. Biochim. Biophys. Acta 30:194–195.

    Article  Google Scholar 

  • Yamamoto, I., T. Saiki, S.-M. Liu, and L. G. Ljungdahl. 1983. Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J. Biol. Chem. 258:1826–1832.

    PubMed  CAS  Google Scholar 

  • Zavarzin, G. A., and A. N. Nozhevnikova. 1977. Aerobic carboxydobacteria. Microbiol. Ecol. 3:305–326.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Chapman & Hall

About this chapter

Cite this chapter

Ragsdale, S.W. (1994). CO Dehydrogenase and the Central Role of This Enzyme in the Fixation of Carbon Dioxide by Anaerobic Bacteria. In: Drake, H.L. (eds) Acetogenesis. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1777-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1777-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5716-2

  • Online ISBN: 978-1-4615-1777-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics