Skip to main content

Fuzzy Sets in Probabilistic Structural Mechanics

  • Chapter
Probabilistic Structural Mechanics Handbook

Abstract

Almost 30 years ago, Zadeh (1965) introduced the concept of fuzzy sets. In ordinary set theory, an element is either a member or not a member of a set (in logic, it is indicated by either 1 or 0). In the fuzzy set, whether or not an element belongs to a set may be expressed not just by 1 or 0, but by any value between 0 and 1, indicating different degrees of the membership of the element. For example, 0 indicates a nonmembership, 0.3 a weak membership, 0.9 a strong membership, and 1.0 crisp membership. Building on Zadeh’s work, Yager (1986) offers the following definition:

A fuzzy set is a generalization of the ideas of an ordinary or crisp set. A fuzzy subset can be seen as a predicate whose truth values are drawn from the unit interval, I = [0, 1] rather than the set (0, 1) as in the case of an ordinary set. Thus fuzzy subset has as its underlying logic a multi-valued logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Baldwin, J. F., and N. C. E. Guild (1980). Feasible algorithms for approximate reasoning using fuzzy logic. Fuzzy Sets and Systems 3:225–251.

    Article  MathSciNet  MATH  Google Scholar 

  • Baldwin, J. F., and B. W. Pilsworth (1980). Axiomatic approach to implementation for approximate reasoning with fuzzy logic. Fuzzy Sets and Systems 3:193–219.

    Article  MathSciNet  MATH  Google Scholar 

  • Blockley, D. I. (1975). Predicting the likelihood of structural accidents. Proceedings of Institution of Civil Engineers 59(2):659–668.

    Article  Google Scholar 

  • Blockley, D. I. (1977). Analysis of structural failures. Part I. Proceedings of Institution of Civil Engineers 62: 51–74.

    Article  Google Scholar 

  • Blockley, D. (1980). The Nature of Structural Design and Safety. New York: John Wiley & Sons.

    Google Scholar 

  • Boissonnade, A. C., W. Dong, H. C. Shah, and E S. Wong (1985). Identification of fuzzy systems in civil engineering. In: Proceedings of International Symposium on Fuzzy Mathematics in Earthquake Researches. Feng Deyi and Liu Xihui, Eds. Beijing, China: Seismological Press, pp. 46–71.

    Google Scholar 

  • Brown, C. B. (1979). A fuzzy safety measure. ASCE Journal of Engineering Mechanics 105(EM5):855–872.

    Google Scholar 

  • Brown, C. B. (1980). The merging of fuzzy and crisp information. ASCE Journal of Engineering Mechanics 106(EM1): 123–133.

    Google Scholar 

  • Brown, C. B., and J. T. P. Yao (1983). Fuzzy sets and structural engineering. ASCE Journal of Structural Engineering 109(5): 1211–1225.

    Article  Google Scholar 

  • Brown, C. B., J. L. Johnson, and J. J. Lofrus (1984). Subjective seismic safety assessment. ASCE Journal of Structural Engineering 110(9):2212–2233.

    Article  Google Scholar 

  • Chiang, W. L., W. M. Dong, and F. S. Wong (1987). A comparative study of probabilistic and fuzzy set method. Probabilistic Engineering Mechanics 2(2):82–91.

    Article  Google Scholar 

  • Dong, W. M., H. C. Shah, and F. S. Wong (1986). Fuzzy computations in risk and decision analysis. Journal of Civil Engineering Systems 2:210–208.

    Google Scholar 

  • Frangopol, D. M., K. Ikfaima, and K. Hong (1988). Seismic hazard prediction using a probabilistic-fuzzy approach. Structural Safety 5:109–117.

    Article  Google Scholar 

  • Giles, R. (1979). A formal system for fuzzy reasoning. Fuzzy Sets and Systems 2:233–257.

    Article  MathSciNet  MATH  Google Scholar 

  • Hadipriono, F. C. (1985). Assessment of falsework performance using fuzzy set concepts. Structural Safety 3(1): 47–57.

    Article  Google Scholar 

  • Hadipriono, E C. (1986). Modus tollens deduction technique for component safety assessment. International Journal of Civil Engineering for Practicing and Design Engineers 5(4):255–268.

    Google Scholar 

  • Hadipriono, F. C. (1987). Approximate reasoning for falsework safety assessment. Structural Safety 4(2):131–140.

    Article  Google Scholar 

  • Hadipriono, F. C. (1988a). Fuzzy set concept for evaluating performance of constructed facilities. ASCE Journal of Performance of Constructed Facilities 2(4):209–225.

    Article  Google Scholar 

  • Hadipriono, F. C. (1988b). Fuzzy Reasoning Expert System (FRES) for Assessing Damage of Protective Structures, a Report Presented to Universal Energy Systems. No. S-760–6MG-054 (Subproject under United States Air Force). Columbus, Ohio: Ohio State University.

    Google Scholar 

  • Hadipriono, F. C., and J. Y. Lai (1986). Assessment of urgency measure to present further damage of concrete components. Structural Safety 4(1):49–62.

    Article  Google Scholar 

  • Hadipriono, E. C., and T. J. Ross (1991). A rule-based fuzzy logic deduction technique for damage assessment of protective structures. Fuzzy Sets and Systems 44(3):459–468.

    Article  Google Scholar 

  • Hadipriono, F. C., and K. M. Sun (1990). Angular fuzzy set models for linguistic values. Journal of Civil Engineering Systems 7(3):148–156.

    Article  Google Scholar 

  • Hadipriono, E. C., and B. K. H. Wong (1987). Cumulative damage studies of highway bridges. Journal of Civil Engineering Systems 4(4):199–205.

    Article  Google Scholar 

  • Kaufmann, A., and M. M. Gupta (1982). Introduction to Fuzzy Arithmetic: Theory and Applications. New York: Van Nostrand Reinhold.

    Google Scholar 

  • Klir, G., and T. Folger (1988). Fuzzy Sets, Uncertainty, and Information. Englewood Cliffs, New Jersey: Prentice-Hall.

    MATH  Google Scholar 

  • Mamdani, E. H., and S. Assilian (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7:1–13.

    Article  MATH  Google Scholar 

  • Norwich, A. M., and I. B. Turksen (1983). The construction of membership function. In: Fuzzy Set and Possibility Theory: Recent Development. R. R. Yager, Ed. London: Pergamon Press, pp. 61–67.

    Google Scholar 

  • Pedrycz, W. (1983). Numerical and applicational aspects of fuzzy relational equations. Fuzzy Sets and Systems 11:1–18.

    Article  MathSciNet  MATH  Google Scholar 

  • Sanchez, E. (1976). Resolution of composite fuzzy relation equations. Information and Control 30:38–48.

    Article  MathSciNet  MATH  Google Scholar 

  • Shibata, H. (1987). An idea to bridge between fuzzy expression and engineering numerical expression. In: Pro ceedings of International Symposium on Fuzzy Systems and Knowledge Engineering. Guangzhou Guiyang, China. Addendum:1–13, Guangdong, China: Higher Education Publishing House.

    Google Scholar 

  • Shiraishi, N., and H. Furuta (1983). Reliability analysis based on fuzzy probability. ASCE Journal of Engineering Mechanics 109(6):1445–1459.

    Article  Google Scholar 

  • Wallsten, T. S., D. V. Budescu, A. Rapoport, R. Zwick, and B. Forsyth (1986). Measuring the vague meanings of probability terms. Journal of Experimental Psychology: General 115(4):348–365.

    Article  Google Scholar 

  • Wu, T. H., M. D. Chen, and M. M. Mossaad (1984). Assessment of the safety of earth dams. Structural Safety 2:145–157.

    Article  Google Scholar 

  • Yager, R. R. (1986). An introduction to fuzzy set theory. In: Application of Fuzzy Set Theory in Human Factors. W. Karwowski and A. Mitai, Eds. Amsterdam: Elsevier Science Publishers, pp. 29–39.

    Google Scholar 

  • Yao, J. T. P. (1981). Damage assessment of existing structures. ASCE Journal of Engineering Mechanics 106(EM4): 785–799.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control 8:338–353.

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L. A. (1968). Probability measures of fuzzy events. Journal of Mathematical Analysis and Applications 23:421–427.

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L. A. (1975a). The concept of a linguistic variable and its application to approximate reasoning. Part I. Information Sciences 9:199–249.

    Article  Google Scholar 

  • Zadeh, L. A. (1975b). The concept of a linguistic variable and its application to approximate reasoning. Part II. Information Sciences 9:301–357.

    Article  Google Scholar 

  • Zadeh, L. A. (1975c). The concept of a linguistic variable and its application to approximate reasoning. Part III. Information Sciences 9:43–80.

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmerman, H. J. (1991). Fuzzy Set Theory and Its Applications. Norwell, Massachusetts: Kluwer Academic.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hadipriono, F.C. (1995). Fuzzy Sets in Probabilistic Structural Mechanics. In: Sundararajan, C. (eds) Probabilistic Structural Mechanics Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1771-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1771-9_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5713-1

  • Online ISBN: 978-1-4615-1771-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics