Skip to main content

Abstract

The use of experimental systems, sensitive to environmental levels of pollutants provide an important alternative to biomonitoring studies, in particular, those involving whole, in vivo systems from which the fraction of organisms showing a particular change in relation with some causal factor, can be identified. Whether in some of the organisms this response is showed earlier than in the rest of the population exposed, it could be an alert that should to be attended to avoid more organisms being affected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anwar W.A., and Gabal M.S. (1991) Cytogenetic study in workers occupationally exposed to mercury fulminate, Mutagenesis, 6: 3,189–192.

    Article  CAS  Google Scholar 

  • Armienta M.A., Rodrίguez R., and Villaseñor (1993) Estudio de reconocimiento de la contaminación por arsénico en la zona de Zimapán, Hidalgo. Report to the Municipality of Zimapán: Geophysics Institute, Universidad Nacional Autónoma de México, 85 pp.

    Google Scholar 

  • Armienta M.A., Rodrίguez R., and Cruz 0. (1997) Arsenic content in hair of people exposed to natural arsenic polluted groundwater at Zimapán, México, Bull. Environ. Contam. Toxicol., 59, pp. 583–589.

    Article  CAS  Google Scholar 

  • Arriaga N., and y Daniel R. (1996) Bases geológicas del origen y movilidad del arsénico en el Valle de Zimapán, Hidalgo, Tesis Ing. Geol., Escuela Superior de Ingenierίa y Arquitectura, IPN, México.

    Google Scholar 

  • C.N.A. (1992) Estudio de prospección geohidrológica y exploración geofίsica en la zona de Tecozautla-Vizarron, Estados de Hidalgo y Queretaro. IGAMSA, Informe Técnico.

    Google Scholar 

  • Cernβ M., Pastorkovβ A., SmÝd J., Bavorovfβ H., OcadlÝkovlβ D., Rossner P, and Zavadil J. (1996) Genotoxicity of industrial effluents, river waters, and their fractions using the Ames test and in vitro cytogenetic assay, J. Toxicol. Lett., 88: 1–3,191–197.

    Google Scholar 

  • Chroust K., KuglÝk P., Relichovβ J., Holoubek I., Cβsasy J., Veselsk β R., Ryskovlβ M., and BenedÝk J. (1997) Drosophila melanogaster, Vicia faba and Arabidopsis thaliana short-term bioassays in genotoxicity evaluation of air and soil samples from sites surrounding two industrial factories in the Czech Republic, Folia. Biol. (Praha) 43: 2, 71–78.

    CAS  Google Scholar 

  • Demerec M. Ed. (1965) Biology of Drosophila, Hafner Publishing Co., 632 p.

    Google Scholar 

  • Frei H., and Würgler F.E. (1988) Statistical methods to decide whether mutagenicity test data from Drosophila assay indicate a positive, negative, or inconclusive result, Mutation Res., 203: 297–308.

    Article  CAS  Google Scholar 

  • Frei H., and Würgler F E. (1995) Optimal experimental design and sample size for the statistical evaluation of data from somatic mutation and recombination tests (SMART) in Drosophila, Mutation Res., 334: 247–258. [33]

    CAS  Google Scholar 

  • Garcίa E., and Falcon Z (1993) Atlas, Porrua, México, 50–51 p.

    Google Scholar 

  • Gimmler-Luz M., Erdtmann B., and Balbueno R. (1992) Analysis of clastogenic effect of Porto Alegre drinking water supplies on mouse bone marrow cells, Mutat. Res., 279: 4,227–231.

    CAS  Google Scholar 

  • Gomez-Arroyo S., Armienta M.A., Cortes-Eslava J., and Villalobos-Pietrini R. (1997) Sister chromatid exchanges in Vicia faba induced by arsenic-contaminated drinking water from Zimapán, Hidalgo, México. Mutat. Res., 394: 1–3, 1–7.

    CAS  Google Scholar 

  • Gomez-Arroyo S., Hernandez-Garcίa A., and Villalobos-Pietrini R. (1988) Induction of sister-chromatid exchanges in Vicia faba by arsenic-contaminated drinking water, Mutat. Res., 208: 3–4, 219–224.

    CAS  Google Scholar 

  • Gonzalez-César E., and Ramos-Morales P. (1997) Sodium azide induces mitotic recombination in Drosophila melanogaster larvae, Mutation Res., 389: 157–165.

    Article  CAS  Google Scholar 

  • Graf U., Würgler E, Katz A., Frei H., Juon H., Hall C., and Kale P. (1984) Somatic mutation and recombination test in Drosophila melanogaster,Environmental Mutagenesis 6: 153–188.

    Article  CAS  Google Scholar 

  • Graf U., and Singer D. (1989) Somatic mutation and recombination test in Drosophila melanogaster (Wing spot test): effects of extracts of airborne particulate matter from fire-exposed and non fire-exposed building ventilation filters. In: Suter K.E., Gruntz U., and Schlatter Ch. (Eds.) (1989) Analytical and toxicological investigations of respiratory filters and building ventilation filters exposed to combustion gases of the chemical warehouse fire in Schweirzehalle, Chemosphere, 19(7): 1019–1109.

    Google Scholar 

  • Graf U., Heo O.S., and Olvera O. (1992) The genotoxicity of chromium (VI) oxide in the wing spot test of Drosophila melanogaster is over 90% due to mitotic recombination, Mutation Res., 266: 197–203.

    Article  CAS  Google Scholar 

  • Hebert P.D., and Luiker M.M. (1996) Genetic effects of contaminant exposure¨Ctowards an assessment of impacts on animal populations. Sci. Total Environ., 191: 1–2, 23–58.

    Article  CAS  Google Scholar 

  • I.N.E.G.I. (1990) Zimapán de Reyes, Estado de Hidalgo, Cuaderno Estadistico Municipal. H. Ayuntamiento de Zimapán de Reyes, 86 pp.

    Google Scholar 

  • I.N.E.G.I. (1994) Zimapán de Reyes, Estado de Hidalgo, Cuaderno Estadistico Municipal. H. Ayuntamiento de Zimapán de Reyes, 92 pp.

    Google Scholar 

  • I.N.E.G.I. (1995) Tecozautla, Estado de Hidalgo, Cuaderno Estadistico Municipal. H. Ayuntamiento de Tecozautla, 96 pp.

    Google Scholar 

  • Iwado H., Naito M., and Hayatsu H. (1991) Mutagenicity and antimutagenicity of air-borne particulates, Mutat. Res., 246(1): 93–102.

    CAS  Google Scholar 

  • Jaylet A., Deparis P., and Gaschignard D. (1986) Induction of micronuclei in peripheral erythrocytes of axolotl larvae following in vivo exposure to mutagenic agents, Mutagenesis, 1: 3,211–215.

    Article  CAS  Google Scholar 

  • Jaylet A., Gauthier L., and Fernandez M. (1987) Detection of mutagenicity in drinking water using a micronucleus test in newt larvae (Pleurodeles waltl), Mutagenesis 2: 3, 211–214.

    Article  CAS  Google Scholar 

  • Kilbey B.J., MacDonald DJ, Auerbach C., Sobels FH., and Vogel E.W. (1981) The use of D. melanogaster in tests for environmental mutagens, Mutation Res., 85: 141–146.

    Article  CAS  Google Scholar 

  • Koren H. (1991) Handbook of Environmental Health and Safety. Principles and Practices, Lewis Publishers, 2 a. ed. Vol. I, pp. 109, 147–148, 243–244, 252.

    Google Scholar 

  • Lewtas J., Claxton L., Mumford J., and Lofroth G. (1993) Bioassay of complex mixtures of indoor air pollutants. IARC Sci. Publ., 109: 85–95.

    CAS  Google Scholar 

  • Lindsley D.L., and Zimm G.G. (1992) The genome of Drosophila melanogaster,Academic Press, New York, 1133 p.

    Google Scholar 

  • Meybeck M., Chapman D., and Helmer R. Eds. (1990) GEMS: Global Environment Monitoring System. Global Freshwater Quality. A first Assessment, WHO, UNEP, 306 pp.

    Google Scholar 

  • Nothiger E. (1970) Sucrose density separation: A method for collecting large numerous of Drosophila larvae. DIS 45: 177.

    Google Scholar 

  • Pandey P., McGowen R.M., Vogel E.W., and Butterworth F.M. (1995) Genotoxicity of polychlorinated biphenyl (PCB) and polynuclear aromatic hydrocarbon (PAH) mixtures in the white/white+ eye-mosaic assay, In: Biomonitors and biomarkers as indicators of environmental change. Eds: F.M. Butterworth, L.D. Corkum, and J. Guzmán-Rincón, Plenum, New York, 1995,183–191.

    Google Scholar 

  • Ramos Leal J.A. (1996) Parámetros estructurales que controlan la hidrodinamica de las aguas subterráneas en el área de Zimapán, Hgo., Tesis Maestrίa en Ciencias de la Tierra, UNAM, México.

    Google Scholar 

  • Rao P.V. (1998) Statistical Research Methods in the Life Sciences, Duxbury, New York, 889 p.

    Google Scholar 

  • S.A.R.H. (1977) Estudio geohidrológico, zona Ixiniquilpan—Zimapán, Estado de Hidalgo. Geohidrológica Mexicana, S.A. Reporte Técnico.

    Google Scholar 

  • Steel G.D., Torrie J.H., and Dickey D.A. (1997) Principles and Procedures of Statistics. A Biometrical Approach, McGraw-Hill, New York, 666 p.

    Google Scholar 

  • Steinkeliner H., Mun-Sik K., Helma C., Ecker S., Ma TH., Horak O., Kundi M., and Knasmuller S. (1998) Genotoxic effects of heavy metals: comparative investigation with plant bioassays. Environ. Mol. Mutagen, 31: 2,183–191.

    Article  Google Scholar 

  • Suter W. (1989a) Ames test: mutagenicity determination of material extracted from respiratory masks worn at the site of the fire. In: Suter K.E., Gruntz U., and Schlatter Ch. (Eds.) (1989) Analytical and toxicological investigations of respiratory filters and building ventilation filters exposed to combustion gases of the chemical warehouse fire in Schweirzehalle, Chemosphere, 19(7): 1019–1109.

    Google Scholar 

  • Suter W. (1989b) Ames test: mutagenic activity of airborne particulate matter from fire-exposed and non fire-exposed building ventilation filters. In: Suter K.E., Gruntz U., and Schlatter Ch. (Eds.) (1989) Analytical and toxicological investigations of respiratory filters and building ventilation filters exposed to combustion gases of the chemical warehouse fire in Schweirzehalle, Chemosphere, 19(7): 1019–1109.

    Google Scholar 

  • Tabor M.W., and Loper J.C. (1985) Analytical isolation, separation and identification of mutagens from nonvolatile organics of drinking water, Int. J. Environ. Anal. Chem., 19: 4 281–318.

    Article  CAS  Google Scholar 

  • Van Hummelen P, Zoll C., Paulussen J., Kirsch-Volders M., and Jaylet A. (1989) The micronucleus test in Xenopus: a new and simple ’in vivo’ technique for detection of mutagens in fresh water, Mutagenesis 4: 1, 12–16.

    Article  Google Scholar 

  • Vogel E. (1988) Summary report on the performance of the Drosophila assays. En: Ashby J., de Serres F, Shelby M., Margolin B., Ishidate M., and Becking G. (1988) Evaluation of short-term tests for carcinogens. WHO, Cambridge University Press, 2.227–2.285.

    Google Scholar 

  • Vogel E., and Szakmary A. (1990) Basic principles and evaluation of results of assays measuring genotoxic damage in somatic cells of Drosophila, Mutation and the Environment, Part b: 149–158.

    Google Scholar 

  • Vogel E.W., and Nivard M.J.M. (1993) Performance of 181 chemicals in a Drosophila assay predominantly monitoring interchromosomal mitotic recombination, Mutagenesis 8(1): 57–81.

    Article  CAS  Google Scholar 

  • Wilcox P., Williamson S., Lodge D.C., and Bootman J. (1988) Concentrated drinking water extracts, which cause bacterial mutation and chromosome damage in CHO cells, do not induce sex-linked recessive lethal mutations in Drosophila, Mutagenesis, 3: 5, 381–387.

    Article  CAS  Google Scholar 

  • Woodruff C.R., Mason J.M., Valencia R., and Zimmering S. (1985) Chemical mutagenesis testing in Drosophila V. Results of 53 coded compounds tested for the National Toxicology Program, Environmental Mutagenesis 7: 677–702.

    Article  CAS  Google Scholar 

  • Würgler RE., and Vogel E.W. (1986) In vivo mutagenicity testing using somatic cells of Drosophila melanogaster, In: Chemical Mutagens, Vol. 10, F.J. de Serres (ed.), Plenum, New York, pp. 1–59.

    Chapter  Google Scholar 

  • Zimmering S., Mason J.M., Valencia R., and Woodruff R.C. (1985) Chemical mutagenesis testing in Drosophila. II. Results of 20 coded compounds tested for the National Toxicology Program. Environ. Mutagen., 7: 1,87–100.

    Article  CAS  Google Scholar 

  • Zwanenburg T.S.B. (1989) Chromosomal aberrations induced by extracts of airborne particulate matter from fire-exposed and non fire-exposed building ventilation filters. In: Suter K.E., Gruntz U., and Schlatter Ch. (Eds.) (1989) Analytical and toxicological investigations of respiratory filters and building ventilation filters exposed to combustion gases of the chemical warehouse fire in Schweirzehalle, Chemosphere, 19(7): 1019–1109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ramos-Morales, P. et al. (2001). Drosophila is a Reliable Biomonitor of Water Pollution. In: Butterworth, F.M., Gunatilaka, A., Gonsebatt, M.E. (eds) Biomonitors and Biomarkers as Indicators of Environmental Change 2. Environmental Science Research, vol 56. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1305-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1305-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5488-8

  • Online ISBN: 978-1-4615-1305-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics