Skip to main content

Effects of Dopamine Receptor Stimulation on Basal Ganglia Activity

  • Chapter
Basal Ganglia and Thalamus in Health and Movement Disorders

The importance of dopamine in the regulation of basal ganglia function and the control of movement has been appreciated for several decades. In the mid 1960’s, histochemical studies established the presence of a dopaminergic nigrostriatal pathway, and neuropathological investigations demonstrated a correlation between dopamine cell loss and Parkinson’s disease (PD) (Anden et al., 1964; Dahlström and Fuxe, 1964; Hornykiewicz, 1966; Poirier and Sourkes, 1966). In the intervening years, a large body of research has provided support for dopamine’s critical role in a range of cognitive and motor functions. In particular, evidence that changes in dopamine receptor stimulation can affect the balance between hypo- and hyperkinetic states has led to considerable interest in how dopamine receptor stimulation ultimately modulates basal ganglia output to permit effective motor control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aladjalova, N.A., 1964, Slow electrical processes in the brain, Prog. Brain Res. 7:1.

    Article  Google Scholar 

  • Albin, R.L., Young, A.B., and Penney, J.B., 1989, The functional anatomy of basal ganglia disorders, Trends Neurosci. 12:366.

    Article  PubMed  CAS  Google Scholar 

  • Allers, K.A., Juncos, J.L., and Rye, D.B., 1997, Anatomical investigation of the dopaminergic innervation of the rat subthalamic nucleus, Soc. Neurosci. Abstr. 23:197.

    Google Scholar 

  • Allers, K.A., Ruskin, D.N., Bergstrom, D.A., Molnar, L.R., and Walters, J.R., 1999, Correlations of multisecond oscillations in firing rate in pairs of basal ganglia neurons, Soc. Neurosci. Abstr. 25:1929.

    Google Scholar 

  • Allers, K.A., Ghazi, L.J., Freeman, L.E., Ruskin, D.N., Bergstrom, D.A., Tierney, P.L., and Walters, J.R.,2000a, Multisecond oscillations in firing rates of rat subthalamic and thalamic reticular nucleus neurons are correlated with bursts of 4-7 Hz cortical activity, Soc. Neurosci. Abstr. 26:690.

    Google Scholar 

  • Allers, K.A., Kreiss, D.S., and Walters, J.R., 2000b, Multisecond oscillations in the subthalamic nucleus:effects of apomorphine and dopamine cell lesion, Synapse, 38:38.

    Article  PubMed  CAS  Google Scholar 

  • Anden, N.-E, Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N.A., and Larsson, K., 1964, Demonstration and mapping out of the nigro-neostriatal dopamine neurons, Life Sci. 3:523.

    Article  PubMed  CAS  Google Scholar 

  • Aosaki, T., Tsubokawa, H., Ishida, A., Watanabe, K., Graybiel, A.M., and Kimura, M., 1994, Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensorimotor conditioning, J. Neurosci. 14:3969.

    PubMed  CAS  Google Scholar 

  • Augood, S.J., Hollingsworth, Z.R., Standaert, D.G., Emson, P.C., and Penney, J.B., 2000, Localization of dopaminergic markers in the human subthalamic nucleus, J. Comp. Neurol. 421:247.

    Article  PubMed  CAS  Google Scholar 

  • Bergman, H., Wichmann, T., Karmon, B., and DeLong, M.R., 1994, The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism, J. Neurophysiol. 72:507.

    PubMed  CAS  Google Scholar 

  • Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., and Vaadia, E., 1998, Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates, Trends Neurosci. 21:32.

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom, D.A., and Walters, J.R., 1981, Neuronal responses of the globus pallidus to systemic administration of d-amphetamine: investigation of the involvement of dopamine, norepinephrine, and serotonin, J. Neurosci. 1:292.

    PubMed  CAS  Google Scholar 

  • Bergstrom, D.A., Bromley, S.D., and Walters, J.R., 1982, Apomorphine increases the activity of rat globus pallidus neurons, Brain Res. 238:266.

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom, D.A., Bromley, S.D., and Walters, J.R., 1984, Dopamine agonists increase pallidal unit activity: attenuation by agonist pretreatment and anesthesia, Eur. J. Pharmacol. 100:3.

    Article  PubMed  CAS  Google Scholar 

  • Biswal, B., Hudetz, A.G., Yetkin, F.Z., Haughton, V.M., and Hyde, J.S., 1997, Hypercapnia reversibly suppresses low-frequency fluctuations in the human motor cortex during rest using echo-planar MRI,J.Cereb. Blood Flow Metab. 17:301.

    Article  PubMed  CAS  Google Scholar 

  • Bolam, J.P., Hanley, J.J., Booth, P.A.C., and Bevan, M.D., 2000, Synaptic organization of the basal ganglia, J.Anat. 196:527.

    Article  PubMed  CAS  Google Scholar 

  • Boraud, T., Bezard, E., Guehl, D., Bioulac, B., and Gross, C.E., 1998, Effects of L-DOPA on neuronal activity of the globus pallidus externalis (GPe) and globus pallidus internalis (GPi) in the MPTP-treatedmonkey, Brain Res. 787:157.

    Article  PubMed  CAS  Google Scholar 

  • Boraud, T, Bezard, E., Stutzmann, J.M., Bioulac, B., and Gross, C.E., 2000, Effects of riluzole on the electrophysiological activity of pallidal neurons in the l-methyl-4-phenyl-l,2,3,6-tetrahdropyridine-treated monkey, Neurosci. Lett. 281 (2-3):75.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, G.A., Eckardt, M.J., and Weight, F.F., 1985, Dopaminergic mechanisms in subthalamic nucleus of rat: analysis using horseradish peroxidase and microiontophoresis, Brain Res. 333:261.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, J.H., Bergstrom, D.A., and Walters, J.R., 1987, Stimulation of both Dl and D2 dopamine receptors appears necessary for full expression of postsynaptic effects of dopamine agonists: a neurophysiological study, Brain Res. 400:205.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, J.H., Bergstrom, D.A., Demo, S.D., and Walters, J.R., 1990, Nigrostriatal lesion alters neurophysiological responses to selective and nonselective D-l and D-2 dopamine agonists in rat globus pallidus, Synapse, 5:83.

    Article  PubMed  CAS  Google Scholar 

  • Cepeda, C., and Levine, M.S., 1998, Dopamine and N-methyl-D-aspartate receptor interactions in the neostriatum, Dev. Neurosci. 20:1.

    Article  PubMed  CAS  Google Scholar 

  • Chen, M.T., Hoffer, B.J., Morales, M., Borlongan, C.V., Hoffman, A.F., and Janak, P.H., 1999, Extracellular single-unit recording from the striatum of freely-moving unilateral 6-OHDA lesioned rats, Soc.Neurosci. Abstr. 25:331.

    Google Scholar 

  • Cossette, M., Levesque, M., and Parent, A., 1999, Extrastriatal dopaminergic innervation of human basal ganglia, Neurosci. Res. 34:51.

    Article  PubMed  CAS  Google Scholar 

  • Dahlström, A., and Fuxe, K., 1964, Evidence for the existence of monoamine neurons in the central nervous system. I Demonstration of monoamines in the cell bodies of brain stem neurons, Acta Physiol. Scand. 62:1.

    Google Scholar 

  • DeLong, M.R., 1990, Primate models of movement disorders of basal ganglia origin, Trends Neurosci. 13:281.

    Article  PubMed  CAS  Google Scholar 

  • Ehlers, C. L., and Foote, S.L., 1984, Ultradian periodicities in EEG and behavior in the squirrel monkey (Saimiri sciureus), Am. J. Primatol. 7:381.

    Article  Google Scholar 

  • Everett, P.W., Kemm, R.E., and McKenzie J.S., 1984, Neural activity in basal ganglia output nuclei and induced hypermotility, in: The Basal Ganglia Structure and Function, G.M. McKenzie, R.E. Kemm, and L.N. Wilcock, eds., Plenum Press, New York.

    Google Scholar 

  • Filion, M., 1979, Effects of interruption of the nigrostriatal pathway and of dopaminergic agents on the spontaneous activity of globus pallidus neurons in the awake monkey, Brain Res. 179:425.

    Article  Google Scholar 

  • Filion, M., and Tremblay, L., 1991, Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism, Brain Res. 547:142.

    PubMed  CAS  Google Scholar 

  • Filion, M., Tremblay, L., and Bedard, P.J., 1991, Effects of dopamine agonists on the spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism, Brain Res. 547:152.

    PubMed  CAS  Google Scholar 

  • Flores-Hernandez, J., Hernandez, S., Snyder, G.L., Yan, Z., Fienberg, A.A., Moss, S.J., Greengard, P., and Surmeier, D.J., 2000, D-l dopamine receptor activation reduces GABA(A) receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade, J. Neurophysiol. 83:2996.

    PubMed  CAS  Google Scholar 

  • Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N., Monsma, F.J., Jr., and Sibley, D.R., 1990, D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons,Science, 250:1429.

    Article  PubMed  CAS  Google Scholar 

  • Greengard, P., Allen, P.B., and Nairn, A.C., 1999, Beyond the dopamine receptor: the DARPP-32/Protein phosphatase-1 cascade, Neuron, 23:435.

    Article  PubMed  CAS  Google Scholar 

  • Hassani, O.K., Mouroux, M., and Féger, J., 1996, Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus, Neuroscience, 72:105.

    Article  PubMed  CAS  Google Scholar 

  • Hassani, O.K., Francois, C., Yelnik, J., and Féger, J., 1997, Evidence for a dopaminergic innervation of the subthalamic nucleus in the rat, Brain Res. 749:88.

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Lopez, S., Bargas, J., Surmeier, D.J., Reyes, A., and Galarraga, E., 1997, D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance, J. Neurosci. 17:3334.

    PubMed  CAS  Google Scholar 

  • Hollerman, J.R., and Grace, A.A., 1992, Subthalamic nucleus cell firing in the 6-OHDA-treated rat: basal activity and response to haloperidol, Brain Res. 590:291.

    Article  PubMed  CAS  Google Scholar 

  • Hooper, K.C., Banks, D.A., Stordahl, L.J., White, I.M., and Rebec, G.V., 1997, Quinpirole inhibits striatal and excites pallidal neurons in freely moving rats, Neurosci. Lett. 237:69.

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz, O., 1966, Dopamine (3-hydroxytyramine) and brain function, Pharmacol. Rev. 18:925.

    PubMed  CAS  Google Scholar 

  • Huang, K.-X., and Walters, J.R., 1994, Electrophysiological effects of SKF 38393 in rats with reserpine treatment and 6-hydroxydopamine-induced nigrostriatal lesions reveal two types of plasticity in D1 dopamine receptor modulation of basal ganglia output, J. Pharmacol. Exp. Ther. 271:1434.

    PubMed  CAS  Google Scholar 

  • Huang, K.-X., and Walters, J.R., 1996, Dopaminergic regulation of AP-1 transcription factor DNA binding activity in rat striatum, Neuroscience, 75:757.

    Article  PubMed  CAS  Google Scholar 

  • Hutchison, W.D., Levy, R., Dostrovsky, J.O., Lozano, A.M., and Lang, A.E., 1997, Effects of apomorphine on globus pallidus neurons in parkinsonian patients, Ann. Neurol 42:767.

    Article  CAS  Google Scholar 

  • Kaneoke, Y., and Vitek, J.L., 1996, Burst and oscillation as disparate neuronal properties, J. Neurosci. Meth. 68:211.

    Article  CAS  Google Scholar 

  • Kawaguchi, Y., Wilson, C.J., and Augood, S.J., 1995, Striatal interneurones: chemical, physiological and morphological characterization, Trends Neurosci. 18:527.

    Article  PubMed  CAS  Google Scholar 

  • Kelland, M.D., and Walters, J.R., 1992, Apomorphine-induced changes in striatal and pallidal neuronal activity are modified by NMDA and muscarinic receptor blockade, Life Sci. 50:L179.

    Article  Google Scholar 

  • Kelland, M.D., Soltis, R.P., Anderson, L.A., Bergstrom, D.A., and Walters, J.R., 1995, In vivo characterization of two cell types in the rat globus pallidus which have opposite responses to dopamine receptor stimulation: comparison of electrophysiological properties and responses to apomorphine, dizocilpine, and ketamine anesthesia, Synapse, 20:338.

    Article  PubMed  CAS  Google Scholar 

  • Kish, L.J., Palmer, M.R., and Gerhardt, G.A., 1999, Multiple single-unit recordings in the striatum of freely moving animals: effects of apomorphine and D-amphetamine in normal and unilateral 6- hydroxydopamine-lesioned rats, Brain Res. 833:58.

    Article  PubMed  CAS  Google Scholar 

  • Kita, H., 1994, Parvalbumin-immunopositive neurons in rat globus pallidus: a light and electron microscopic study, Brain Res. 657:31.

    Article  PubMed  CAS  Google Scholar 

  • Kita, H., Tokuno, H., and Nambu, A., 1999, Monkey globus pallidus external segment neurons projecting to the neostriatum, Neuroreport, 10:1467.

    Article  PubMed  CAS  Google Scholar 

  • Kreiss, D.S., Anderson, L.A., and Walters, J.R., 1996, Apomorphine and dopamine D1 receptor agonists increase the firing rates of subthalamic nucleus neurons, Neuroscience, 72:863.

    Article  PubMed  CAS  Google Scholar 

  • Kreiss, D.S., Mastropietro, C.W., Rawji, S.S., and Walters, J.R., 1997, The response of subthalamic nucleus neurons to dopamine receptor stimulation in a rodent model of Parkinson’s disease, J. Neurosci. 17:6807.

    PubMed  CAS  Google Scholar 

  • Kropotov, J.D., and Gretchin, V.B., 1975, Correlations between slow oscillations of electrical potential and pO2 in the human brain, Sov. J. Physiol. 61:331.

    Google Scholar 

  • Le Moine, C., Normand, E., and Bloch, B., 1991, Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene, Proc. Natl. Acad. Sci. USA 88:4205.

    Article  PubMed  Google Scholar 

  • Lenz, F.A., Suarez, J.I., Verhagen Metman, L., Reich, S.G., Karp, B.I., Hallett, M., Rowland, L.H., and Dougherty, P.M., 1998, Pallidal activity during dystonia: somatosensory reorganisation and changes with severity, J. Neurol. Neurosurg. Psychiat. 65:767.

    Article  PubMed  CAS  Google Scholar 

  • Lozano, A.M., Lang, A.E., Levy, R., Hutchison, W., and Dostrovsky, J., 2000, Neuronal recordings in Parkinson’s disease patients with dyskinesias induced by apomorphine, Ann. Neurol. 47:S141.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, M., Tremblay, L., Richard, H., and Filion, M., 1995, Activity of pallidal neurons in the monkey during dyskinesia induced by injection of bicuculline in the external pallidum, Neuroscience, 65:59.

    Article  PubMed  CAS  Google Scholar 

  • Meibach, M.R.C., and Katzman, R., 1979, Catecholaminergic innervation of the subthalamic nucleus:evidence for a rostral continuation of the A9 (substantia nigra) dopaminergic group, Brain Res.173:364.

    Article  PubMed  CAS  Google Scholar 

  • Merello, M., Balej, J., and Delfino, M., 1999, Apomorphine induces changes in GPi spontaneous outflow in patients with Parkinson’s disease, Mov. Disorders, 14:45.

    Article  CAS  Google Scholar 

  • Miller, W.C., and DeLong, M.R., 1987, Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of parkinsonism, in: The Basal Ganglia, M.B. Carpenter and A. Jayarman, eds., Plenum Press, New York.

    Google Scholar 

  • Norton, S., and Jewett, R.E., 1965, Frequencies of slow potential oscillations in the cortex of cats, Electroencephalogr. Clin. Neurophysiol. 19:377.

    Article  PubMed  CAS  Google Scholar 

  • Obeso, J.A., Rodriguez-Oroz, M.D., Rodriguez, M., DeLong, M.R., and Olanow, C.W., 2000, Pathophysiology of levodopa-induced dyskinesias in Parkinson’s disease: problems with the current model, Ann. Neurol. (Suppl. 1) 47:S22.

    PubMed  CAS  Google Scholar 

  • Olds, M.E., Jacques, D.B., and Kopyov, O., 1999, Subthalamic responses to amphetamine and apomorphine in the behaving rat with a unilateral 6-OHDA lesion in the substantia nigra, Synapse, 34:228.

    Article  PubMed  CAS  Google Scholar 

  • Onn, S.-P., and Grace, A.A., 1999, Alterations in electrophysiological activity and dye coupling of striatal spiny and aspiny neurons in dopamine-denervated rat striatum recorded in vivo, Synapse, 33:1.

    Article  PubMed  CAS  Google Scholar 

  • Pan, H.S., Penney, J.B., and Young, A.B., 1985, y-Aminobutyric acid and benzodiazepine receptor changes induced by unilateral 6-hydroxydopamine lesions of the medial forebrain bundle, J. Neurochem. 45:1396.

    Article  PubMed  CAS  Google Scholar 

  • Pan, H.S., and Walters, J.R., 1988, Unilateral lesion of the nigrostriatal pathway decreases the firing rate and alters the firing pattern of globus pallidus neurons in the rat, Synapse, 2:650.

    Article  PubMed  CAS  Google Scholar 

  • Papa, S.M., Desimone, R., Fiorani, M., and Oldfield, E.H., 1999, Internal globus pallidus discharge is nearly suppressed during levodopa-induced dyskinesias, Ann. Neurol. 46:732.

    Article  PubMed  CAS  Google Scholar 

  • Papa, S.M., Mewes, K., DeLong, M.R., and Baron, M.S., 2000, Neuronal activity correlates of levodopa-induced dyskinesias in the basal ganglia, Neurology, 54 (Suppl. 3):A456.

    Google Scholar 

  • Poirier, L.J., and Sourkes, T.L., 1966, Influence of the substantia nigra on the catecholamine content of the striatum, Brain, 88:181.

    Article  Google Scholar 

  • Raz, A., Feingold, A., Zelanskaya, V., Vaadia, E., and Bergman, H., 1996, Neuronal synchronization of tonically active neurons in the striatum of normal and Parkinsonian primates, J. Neurophysiol. 76:2083.

    PubMed  CAS  Google Scholar 

  • Robertson, G.S., Vincent, S.R., and Fibiger, H.C., 1992, D1 and D2 dopamine receptors differentially regulate c-fos expression in striatonigral and striatopallidal neurons, Neuroscience, 49:285.

    Article  PubMed  CAS  Google Scholar 

  • Rosa-Kenig, A., Puotz, J.K., and Rebec, G.V., 1993, The involvement of D1 and D2 dopamine receptors in amphetamine- induced changes in striatal unit activity in behaving rats, Brain Res. 619:347.

    Article  PubMed  CAS  Google Scholar 

  • Ruskin, D.N., and Marshall, J.F., 1994, Amphetamine- and cocaine-induced Fos in the rat striatum depends on D2 dopamine-receptor activation, Synapse, 18:233.

    Article  PubMed  CAS  Google Scholar 

  • Ruskin, D.N., and Marshall, J.F., 1997, Differing influences of dopamine agonists and antagonists on Fos expression in identified populations of globus pallidus neurons, Neuroscience, 81:79.

    Article  PubMed  CAS  Google Scholar 

  • Ruskin, D.N., Rawji, S.S., and Walters, J.R., 1998, Effects of full D1 dopamine receptor agonists on firing rates in the globus pallidus and substantia nigra pars compacta in vivo: tests for D1 receptor selectivity and comparisons to the partial agonist SKF 38393, J. Pharmacol. Exp. Ther. 286:272.

    PubMed  CAS  Google Scholar 

  • Ruskin, D.N., Bergstrom, D.A., Kaneoke, Y., Patel, B.N., Twery, M.J., and Walters, J.R., 1999a, Multisecond oscillations in firing rate in the basal ganglia: robust modulation by dopamine receptor and anesthesia, J. Neurophysiol. 81:2046.

    PubMed  CAS  Google Scholar 

  • Ruskin, D.N., Bergstrom, D.A., Twery, M.J., and Walters, J.R., 1999b, Dopamine agonist-mediated rotation in rats with unilateral nigrostriatal lesions is not dependent on net inhibitions of rate in basal ganglia output nuclei, Neuroscience, 91:935.

    Article  PubMed  CAS  Google Scholar 

  • Ruskin, D.N., Bergstrom, D.A., and Walters, J.R., 1999c, Firing rates and multisecond oscillations in the rodent entopeduncular nucleus: effects of dopamine agonists and nigrostriatal lesion, Soc. Neurosci.Abstr. 25:1929.

    Google Scholar 

  • Ruskin, D.N., Bergstrom, D.A., and Walters, J.R., 1999d, Multisecond oscillations in firing rate in the globus pallidus: synergistic modulation by Dl and D2 dopamine receptors, J. Pharmacol. Exp. Ther. 290:1493.

    PubMed  CAS  Google Scholar 

  • Ruskin, D.N., Bergstrom, D.A., Shenker, A., Freeman, L.E., Baek, D., and Walters, J.R., 2000, Drugs used in the treatment of ADHD affect postsynaptic firing rate and oscillations without preferential dopamine autoreceptor action, Biol. Psychiat. in press.

    Google Scholar 

  • Sato, F., Lavallee, P., Levesque, M., and Parent, A., 2000, Single-axon tracing study of neurons of the external segment of the globus pallidus in primate, J. Comp. Neurol. 417:17.

    Article  PubMed  CAS  Google Scholar 

  • Scheel-Krüger, J., 1986, Dopamine-GABA interactions: evidence that GABA transmits, modulates and mediates dopaminergic functions in the basal ganglia and the limbic system, Acta Neurol. Scand. Suppl. 73:1.

    Google Scholar 

  • Skirboll, L.R., Grace, A., and Bunney, B.S., 1979, Dopamine auto- and postsynaptic receptors: electrophysiological evidence for differential sensitivity to dopamine agonists, Science, 206:80.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, G.L., Allen, P.B., Fienberg, A.A., Valle, C.G., Huganir, R.L., Nairn, A.C., and Greengard, P., 2000, Regulation of phosphorylation of the GluRl AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo, J. Neurosci. 20:4480.

    PubMed  CAS  Google Scholar 

  • Stefani, A., Stanzione, P., Bassi, A., Mazzone, P., Vangelista, T., and Bernardi, G., 1997, Effects of increasing doses of apomorphine during stereotaxic neurosurgery in Parkinson’s disease: clinical score and internal globus pallidus activity, J. Neural Transm. 104:895.

    Article  PubMed  CAS  Google Scholar 

  • Verhagen Metman, L., Lee, J.I., Chen, P., Dougherty, P.M., and Lenz, F.A., 2000, Apomorphine-induced dyskinesia and single-cell discharges in globus pallidus internus of parkinsonian subjects, Neurology, 54 (Suppl.3):A456.

    Google Scholar 

  • Vila, M., Périer, C., Féger, J., Yelnik, J., Faucheux, B., Ruberg, M., Raisman-Vozare, R., Agid, Y., and Hirsch, E.C., 2000, Evolution of changes in neuronal activity in the subthalamic nucleus of rats with unilateral lesion of the substantia nigra assessed by metabolic and electrophysiological measurements, Eur. J. Neurosci. 12:337.

    Article  PubMed  CAS  Google Scholar 

  • Walters, J.R., Bergstrom, D.A., Carlson, J.H., Chase, T.N., and Braun, A.R., 1987, D1 dopamine receptor activation required for postsynaptic expression of D2 agonist effects, Science, 236:719.

    Article  PubMed  CAS  Google Scholar 

  • Walters, J.R., Bergstrom, D.A., Ruskin, D.N., Allers, K.A., Rawji, S.S., and Twery, M.J., 1997, Relative properties of spike trains in the substantia nigra pars reticulata and subthalamic nucleus in an animal model of Parkinson’s disease, Soc. Neurosci. Abstr. 23:192.

    Google Scholar 

  • Walters, J.R., Allers, K.A., Bergstrom, D.A., Freeman, L.E., Baek, D., Tierney, P.L., and Ruskin, D.N, 2000a,Multisecond periodicities in globus pallidus firing rate correlate with bursts of EEG theta rhythm in baseline and after dopamine agonist treatment, Soc. Neurosci. Abstr. 26:962.

    Google Scholar 

  • Walters, J.R., Ruskin, D.N., Allers, K.A., and Bergstrom, D.A., 2000b, Pre- and postsynaptic aspects of dopamine-mediated transmission, Trends Neurosci. 23:S41.

    Article  PubMed  CAS  Google Scholar 

  • Walters, J.R., Ruskin, D.N., Allers, K.A., and Bergstrom, D.A., 2000c, Effects of dopamine receptor stimulation on single unit activity in the basal ganglia, in: The Basal Ganglia VI, M.R. DeLong, A.M. Graybiel, and S.T. Kitai, eds., Kluwer Press, New York.

    Google Scholar 

  • Wang, J.Q., and McGinty, J.F., 1996, D1 and D2 receptor regulation of preproenkephalin and preprodynorphin mRNA in rat striatum following acute injection of amphetamine or methamphetamine, Synapse, 22:114.

    Article  PubMed  Google Scholar 

  • Warenycia, M.W., and McKenzie, G.M., 1984, Immobilization of rats modifies the response of striatal neurons to dexamphetamine, Pharmacol. Biochem. Behav. 21:53.

    Article  PubMed  CAS  Google Scholar 

  • Waszczak, B.W., Lee, E.K., Ferraro, T., Hare, T.A., and Walters, J.R., 1984, Single unit responses of substantia nigra pars reticulata neurons to apomorphine: effects of striatal lesions and anesthesia, Brain Res. 306:307.

    Article  PubMed  CAS  Google Scholar 

  • Weick, B.G., and Walters, J.R., 1987, Effects of D1 and D2 dopamine receptor stimulation on the activity of substantia nigra pars reticulata neurons in 6-hydroxydopamine lesioned rats: D1/D2 coactivation induces potentiated responses, Brain Res. 405:234.

    Article  PubMed  CAS  Google Scholar 

  • Weick, B.G., and Walters, J.R., 1988, The D-l selective agonist SKF 38393 can activate striatal neurons in 6- hydroxydopamine lesioned rats, Soc. Neurosci. Abstr. 14:1077.

    Google Scholar 

  • West, M.O., Peoples, L.L., Michael, A.J., Chapin, J.K., and Woodward, D.J., 1997, Low-dose amphetamine elevates movement-related firing of rat striatal neurons, Brain Res. 745:331.

    Article  PubMed  CAS  Google Scholar 

  • West, M.O., 1998, Anesthetics eliminate somatosensory-evoked discharges of neurons in the somatotopically organized sensorimotor striatum of the rat, J. Neurosci. 18:9055.

    PubMed  CAS  Google Scholar 

  • Wichmann, T., Bergman, H., Kliem, M.A., Soares, J., and DeLong, M.R., 1999a, Low-frequency oscillatory discharge in the primate substantia nigra pars reticulata in the normal and parkinsonian state, Soc. Neurosci. Abstr. 25:1928.

    Google Scholar 

  • Wichmann, T., Bergman, H., Starr, P.A., Subramanian, T., Watts, R.L., and DeLong, M.R., 1999b, Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates, Exp. Brain. Res. 125:397.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C.J., Chang, H.T., and Kitai, S.T., 1990, Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum, J. Neurosci. 10:508.

    PubMed  CAS  Google Scholar 

  • Yan, Z., Song, W.J., and Surmeier, D.J., 1997, D-2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane- delimited, protein-kinase-C-insensitive pathway, J. Neurophysiol. 77:1003.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walters, J.R., Bergstrom, D.A., Molnar, L.R., Freeman, L.E., Ruskin, D.N. (2001). Effects of Dopamine Receptor Stimulation on Basal Ganglia Activity. In: Kultas-Ilinsky, K., Ilinsky, I.A. (eds) Basal Ganglia and Thalamus in Health and Movement Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1235-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1235-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5454-3

  • Online ISBN: 978-1-4615-1235-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics