Skip to main content

Conceptual Issues in the Ecology and Evolution of Circadian Rhythms

  • Chapter
Circadian Clocks

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 12))

Abstract

Many species of Drosophila eclose from their pupal cases at dawn. Does this eclosion occur in response to an environmental stimulus (i.e., a change in humidity, temperature, or light) or in response to an endogenous timing mechanism? A bird may fly in one direction for a few thousand kilometers, then turn and fly in another direction. Is the bird responding to landmarks or magnetic cues, or does a biological clock determine how long the bird flies in a particular direction during migration? These questions and others like them are important if we are to understand how the behavior* of organisms in their natural environment is regulated and why it is regulated as it is.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aschoff, J. (1960). Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symposia on Quantitative Biology, 25, 11–28.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, A. F. (1987). The accomplishments of ecological physiology. In M. E. Feder, A. F. Bennett, W. W. Burggren, & R. B. Huey (Eds.), New directions in ecological physiology, (pp. 1–8). Cambridge: Cambridge University Press.

    Google Scholar 

  • Brooks, D. R., & McLennan, D. A. (1991). Phylogeny, ecology, and behavior. A research program in comparative biology. Chicago: University of Chicago Press.

    Google Scholar 

  • Bunning, E. (1960). Opening address: Biological clocks. Cold Spring Harbor Symposia on Quantitative Biology, 25, 1–9.

    Article  Google Scholar 

  • Bunning, E. (1971). The adaptive value of circadian leaf movements. In M. Menaker (Ed.), Biochronometry (pp. 203–211). Washington, DC: National Academy of Sciences.

    Google Scholar 

  • Claypool, L. E. (1984). The environmental and physiological determinants of activity patterns in Microtus montanus the montane vole. Doctoral dissertation, University of Utah, Salt Lake City, UT.

    Google Scholar 

  • Cloudsley-Thompson, J. L. (1960). Adaptive functions of circadian rhythms. Cold Spring HarborSymposia on Quantitative Biology, 25, 345–355.

    Article  CAS  Google Scholar 

  • Costa, R., Peixoto, A. A., Thackeray, J. R., Dalgleish, R., & Kyriacou, C. P. (1991). Length polymorphism in the threonine-glycine-encoding repeat region of the period gene in Drosophila. Journal of Molecular Evolution, 32, 238–246.

    Article  PubMed  CAS  Google Scholar 

  • Costa, R., Peixoto, A. A., Barbujani, G., & Kyriacou, C. P. (1992). A latitudinal dine in a Drosophila clock gene. Proceedings of the Royal Society of London, Series B, 250, 43–49.

    CAS  Google Scholar 

  • Crosthwaite, S. K, Dunlap, J. C., & Loros, J. J. (1997). Neurospora we-1 and we-2: Transcription, photo-responses, and the origins of circadian rhythmicity. Science, 276, 763–769.

    Article  PubMed  CAS  Google Scholar 

  • Daan, S. (1981). Adaptive daily strategies in behavior. In J. Aschoff (Ed.), Handbook of neurobiology and behavior. Vol. 4. Biological clocks (pp. 275–298). New York: Plenum Press.

    Google Scholar 

  • Daan, S., & Aschoff, J. (1982). Circadian contributions to survival. In J. Aschoff, S. Daan, & G. Groos (Eds.), Vertebrate circadian systems (pp. 305–321). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Daan, S., & Tinbergen, J. M. (1980). Young guillemots (Una lomvia) leaving their Arctic breeding cliffs: A daily rhythm in numbers and risk. Ardea, 67, 96–100.

    Google Scholar 

  • Darwin, C. (1859). The origin of species by means of natural selection. London: John Murray.

    Google Scholar 

  • DeCoursey, P. J. (1990). Circadian photoentrainment in nocturnal mammals: Ecological overtones. Biology of Behavior, 15, 213–238.

    Google Scholar 

  • DeCoursey, P.J., Krulas, J. R., Mele, G., & Holley, D. C. (1997). Circadian performance of suprachiasmatic nuclei (SCN)-lesioned antelope ground squirrels in a desert enclosure. Physiology and Behavior, 62, 11099–11108.

    Article  Google Scholar 

  • DeCoursey, P. J., Heideman, P., Horton, T., Lee, T., Reebs, S., & Smale, L. The behavioral ecology and evolution of biological timing systems. In J. C. Dunlap and J. J. Loros (Eds.), Biological clocks. New York: Oxford University Press. (Submitted)

    Google Scholar 

  • Endler, J. A. (1986). Natural selection in the wild. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Enright, J. T. (1970). Ecological aspects of endogenous rhythmicity. Annual Review of Ecology and Systematics, 1, 221–238.

    Article  Google Scholar 

  • Erkinaro, E. (1969). Der Phasenwechsel der lokomotorischen Activitat bei Microtus agrestis (L.), M. arvalis (Pall.) and M. oeconomus (Pall.). Aquilo, Series 2oologica, 8, 1–31.

    Google Scholar 

  • Gekakis, N., Saez, L., Delahaye-Brown, A.-M., Myers, M. P., Sehgal, A., Young, M. W., & Weitz, C. J. (1995). Isolation of timeless by PER protein interaction: Defective interaction between timeless protein and long-period mutant PERL. Science, 270, 811–815.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, B. D., Goldman, S. L., Riccio, A. P., & Terkel, J. (1997). Circadian patterns of locomotor activity and body temperature in blind mole-rats, Spalax ehrenbergi. Journal of Biological Rhythms, 12, 348–361.

    Article  PubMed  CAS  Google Scholar 

  • Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London, Series B, 205, 581–598.

    CAS  Google Scholar 

  • Harvey, P. H., & Pagel, M. D. (1991). The comparative method in evolutionary biology. Oxford: OxfordUniversity Press.

    Google Scholar 

  • Hennig, W. (1950). Grundzüge einer Theorie der phylogenetischen Systematic. Berlin: Deutscher Zentralverlag. Hennig, W. (1966). Phylogenetic systematics. Urbana: University of Illinois Press.

    Google Scholar 

  • Hillis, D. M., Moritz, C., & Mable, B. K. (Eds.) (1996). Molecular systematics. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Hillman, W. S. (1956). Injury of tomato plants by continuous light and unfavorable photoperiodic cycles. American Journal of Botany, 43, 89–96.

    Article  Google Scholar 

  • Honrado, G. I., & Mrosovsky, N. (1991). Interaction between periodic socio-sexual cues and light-dark cycles in controlling the phasing of activity rhythms in golden hamsters. Ethology Ecology and Evolution, 3, 221–231.

    Article  Google Scholar 

  • Hoogenboom, I., Daan, S., Dallinga, J. H., & Schoenmakers, M. (1984). Seasonal change in the daily timing of behavior of the common vole, Microtus arvalis. Oecologia, 61, 18–31.

    Article  Google Scholar 

  • Horton, T. H., & Rowsemitt, C. N. (1992). Natural selection and variation in reproductive physiology. In T. E. Tomasi & T. H. Horton (Eds.), Mammalian energetics. Interdisciplinary views of metabolism and reproduction (pp. 160–185). Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Huang, Z. J., Edery, I., & Rosbash, M. (1993). PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature, 364, 259–262.

    Article  PubMed  CAS  Google Scholar 

  • Jegla, T. C., & Poulson, T. L. (1968). Evidence of circadian rhythms in a cave crayfish. Journal of Experimental Zoology, 168, 273–282.

    Article  Google Scholar 

  • Kay, S. A. (1997). PAS, present, and future: Clues to the origins of circadian clocks. Science, 276, 753–754.

    Article  PubMed  CAS  Google Scholar 

  • Kenagy, G. J. (1973). Daily and seasonal patterns of activity and energetics in a heteromyid rodent community. Ecology, 54, 1201–1219.

    Article  Google Scholar 

  • Kenagy, G. J. (1976). The periodicity of daily activity and its seasonal changes in free-ranging and captive kangaroo rats. Oecologia (Berlin), 24, 105–140.

    Article  Google Scholar 

  • Kenagy, G. J. (1978). Seasonality of endogenous circadian rhythms in a diurnal rodent Ammospermophilus leucurous and a nocturnal rodent Dipodomys merriami. Journal of Comparative Physiology, 128, 21–36.

    Article  Google Scholar 

  • Kenagy, G. J., & Vleck, D. (1982). Daily temporal organization of metabolism in small mammals: Adaptation and diversity. In J. Aschoff, S. Daan, and G. Groos (Eds.), Vertebrate circadian systems (pp. 322338). Berlin: Springer-Verlag.

    Google Scholar 

  • King, D. P., Zhao, Y., Sangoram, A. M., Wilsbacher, L. D., Tanaka, M., Antoch, M. P., Steeves, T. D. L., Vitaterna, M. H., Kornhauser, J. M., Lowrey, P. L., Turek, F. W., & Takahashi, J. S. (1997). Positional cloning of the mouse circadian Clock gene. Cell, 89, 641–653.

    Article  PubMed  CAS  Google Scholar 

  • Klein, D. C., Coon, S. L., Roseboom, P. H., Weller, J. L., Bernard, M., Gastel, J. A., Zatz, M., Iuvone, P. M., Rodriguez, I. R., Begay, V., Falcon, J., Cahill, G. M., & Cassone, V. M. (1997). The melatonin rhythm-generating enzyme: Molecular regulation of serotonin N-acetyltransferase in the pineal gland. Recent Progress in Hormone Research, 52, 307–357 [Discussion, pp. 357–358].

    PubMed  CAS  Google Scholar 

  • Kondo, T., Golden, S. S., Ishiura, M., & Johnson, C. H. (1994). Circadian rhythms of cyanobacteria expressed from a luciferase reporter gene. In T. Hiroshige & K-I. Honma (Eds.), Evolution of circadian clock (pp. 59–73). Sapporo, Japan: University of Hokkaido Press.

    Google Scholar 

  • Kotler, B. P., Brown, J. S., & Subach, A. (1993). Mechanisms of species coexistence of optimal foragers: Temporal partitioning by two species of sand dune gerbils. Oikos, 67, 548–556.

    Article  Google Scholar 

  • Lovegrove, B. G., Sc Muir, A. (1996). Circadian body temperature rhythms of the solitary Cape mole rat Georychus capensis (Bathyergidae). Physiology and Behavior, 60, 991–998.

    PubMed  CAS  Google Scholar 

  • Menaker, M., & Tosini, G. (1996). The evolution of vertebrate circadian systems. In K-I. Honma & S. Honma (Eds.), Circadian organization and oscillatory coupling (pp. 39–52). Sapporo, Japan: Hokkaido University Press.

    Google Scholar 

  • Mrosovsky, N. (1996). Locomotor activity and non-photic influences on circadian clocks. Biological Review, 71, 343–372.

    Article  CAS  Google Scholar 

  • Page, T. L. (1989). Physiology and development of a circadian clock. In T. Hiroshige Sc K-I. Honma (Eds.), Circadian clocks and ecology (pp. 3–17). Sapporo, Japan: Hokkaido University Press.

    Google Scholar 

  • Pittendrigh, C. S., & Daan, S. (1976a). A functional analysis of circadian pacemakers in nocturnal rodents. I. The stability and lability of spontaneous frequency. Journal of Comparative Physiology A, 106, 223–252.

    Article  Google Scholar 

  • Pittendrigh, C. S., & Daan, S. (1976b). A functional analysis of circadian pacemakers in nocturnal rodents. W. Entrainment: Pacemaker as clock. Journal of Comparative Physiology A, 106, 291–331.

    Article  Google Scholar 

  • Pittendrigh, C. S., & Daan, S. (1976c). A functional analysis of circadian pacemakers. V. Pacemaker structure a clock for all seasons. Journal of Comparative Physiology A, 106, 333–355.

    Article  Google Scholar 

  • Pittendrigh, C. S., & Minis, D. H. (1972). Circadian systems: Longevity as a function of circadian resonance in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA, 69, 1537–1539.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh, C. S., Kyner, W. T., & Takamura, T. (1991). The amplitude of circadian oscillations: Temperature dependence, latitudinal clines and photoperiodic time measurement. Journal of Biological Rhythms, 6, 299–313.

    Article  PubMed  CAS  Google Scholar 

  • Pohl, H. (1983). Strain differences in responses of the circadian system to light in the Syrian hamster. Experientia, 39, 372–374.

    Article  PubMed  CAS  Google Scholar 

  • Possidente, B., & Hegmann, J. P. (1982). Gene differences modify Aschoff s rule in mice. Physiology and Behavior, 28, 199–200.

    Article  PubMed  CAS  Google Scholar 

  • Poulson, T. L., & White, W. B. (1969). The cave environment. Science, 165, 971–980.

    Article  PubMed  CAS  Google Scholar 

  • Rapp, P. E. (1987). Why are so many biological systems perioidic? Progress in Neurobiology, 29, 261–273.

    Article  PubMed  CAS  Google Scholar 

  • Reppert, S. M., & Weaver, D. R. (1997). Forward genetic approach strikes gold: Cloning of a mammalian Clock gene. Cell, 89, 487–490.

    Article  PubMed  CAS  Google Scholar 

  • Roenneberg, T. (1994). The Gonyaulax circadian system: Evidence for two input pathways and two oscillators. In T. Hiroshige & K.-I. Houma (Eds.), Evolution of circadian clock (pp. 3–20). Sapporo, Japan: Hokkaido University Press.

    Google Scholar 

  • Rosato, E., Peixoto, A. A., Barbujani, G., Costa, R., & Kyriacou, C. P. (1994). Molecular polymorphism in the period gene of Drosophila simulans. Genetics, 138, 693–797.

    PubMed  CAS  Google Scholar 

  • Rowsemitt, C. N. (1986). Seasonal variations in activity rhythms of male voles: Mediation by gonadal hormones. Physiology and Behavior, 37, 797–803.

    Article  PubMed  CAS  Google Scholar 

  • Rowsemitt, C. N., Petterborg, L. J., Claypool, L. E., Hoppenstaedt, E C., Negus, N. C., & Berger, P. J. (1982). Photoperiodic induction of diurnal locomotor activity in Microtus montanus, the montane vole. Canadian Journal of Zoology, 60, 2798–2803.

    Article  Google Scholar 

  • Saint Paul, U. V., & Aschoff, J. (1978). Longevity among blowflies Phormia terraenovae R.D. kept in non-24hour light-dark cycles. Journal of Comparative Physiology, 127, 191.

    Article  Google Scholar 

  • Sassone-Corsi, P. (1996). Same clock, different works. Nature, 384, 613–614.

    Article  PubMed  CAS  Google Scholar 

  • Sauman, I., & Reppert, S. M. (1996). Circadian clock neurons in the silkmoth Antheraea pernyi: Novel mechanisms of period protein regulation. Neuron, 17, 889–900.

    Article  PubMed  CAS  Google Scholar 

  • Sawyer, L. A., Hennessy, J. M., Peixoto, A. A., Rosato, E., Parkinson, H., Costa, R., & Kyriacou, C. P. (1997). Natural variation in Drosophila clock gene and temperature compensation. Science, 278, 2117–2120.

    Article  PubMed  CAS  Google Scholar 

  • Schoener, T. W. (1970). Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology, 51, 408–418.

    Article  Google Scholar 

  • Schoener, T. W. (1974). Resource partitioning in ecological communities. Science, 185, 27–58.

    Article  PubMed  CAS  Google Scholar 

  • Sehgal, A., Rothenfluh-Hilfiker, A., Hunter-Ensor, M., Chen, Y., Myers, M. P., & Young, M. W. (1995). Rhythmic expression of timeless A basis for promoting circadian cycles in period gene autoregulation. Science, 270, 808–810.

    Article  PubMed  CAS  Google Scholar 

  • Shearman, L. P., Zylka, M. J., Weaver, D. R., Kolakowski, L. F. J., & Reppert, S. M. (1997). Two period homologs: Circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron, 19, 1261–1269.

    Article  PubMed  CAS  Google Scholar 

  • Shigeyoshi, Y., Taguchi, K, Yamamoto, S., Takekida, S., Yan, L., Tei, H., Moriya, T., Shibata, S., Loros, J.J., Dunlap, J C, & Okamura, H. (1997). Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPerl transcript. Cell, 91, 1043–1053.

    Article  PubMed  CAS  Google Scholar 

  • Shimomura, K, Vitaterna, M. H., Low-Zeddies, S. S., Whiteley, A. R., & Takahashi, J. S. (1998). Genetic dissection of strain differences in mouse circadian rhythmicity. Presented at the Annual Meeting of the Society for Research on Biological Rhythms, Amelia Island Plantation, June 1998.

    Google Scholar 

  • Soni, B. G., & Foster, R. G. (1997). A novel and ancient vertebrate opsin. FEBS Letters, 406, 279–83.

    Article  PubMed  CAS  Google Scholar 

  • Swofford,D. L., Olsen, G. J., Waddell, P.J., & Hillis, D. M. (1996). Phylogenetic inference. In D. M. Hillis, C. Moritz, & B. K. Mable (Eds.),Molecular syste matics Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Takahashi, J. S. (1995). Molecular neurobiology and genetics of circadian rhythms in mammals. Annual Review of Neuroscience, 18, 531–553.

    Article  PubMed  CAS  Google Scholar 

  • Wikelski, M., & Hau, M. (1995). Is there an endogenous tidal foraging rhythm in marine iguanas. Journal of Biological Rhythms, 10, 335–350.

    Article  PubMed  CAS  Google Scholar 

  • Wiley, E. O. (1981). Phylogenetics: The theory and practice of phylogenetic systematics. New York: Wiley.

    Google Scholar 

  • Wilson, D. E., & Reeder, D. M. (Eds.) (1993). Mammal species of the world. A taxonomic and geographic reference. Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Zucker, I. (1983). Motivation, biological clocks, and temporal organization of behavior. In E. Satinoff & P. Teitelbaum (Eds.), Handbook of behavioral neurobiology. (Vol. 6, pp. 3–21). New York: Plenum Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Horton, T.H. (2001). Conceptual Issues in the Ecology and Evolution of Circadian Rhythms. In: Takahashi, J.S., Turek, F.W., Moore, R.Y. (eds) Circadian Clocks. Handbook of Behavioral Neurobiology, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1201-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1201-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5438-3

  • Online ISBN: 978-1-4615-1201-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics