Skip to main content

The Entrainment of Circadian Systems

  • Chapter
Circadian Clocks

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 12))

Abstract

The entrainment of circadian systems is essential for their functional significance as well as for our insight into their physiologic organization. Entrainment entails the adjustment of both the frequency and phase of rhythms in the living world to the cycle of the earth’s rotation. It is only by virtue of entrainment that programs in behavior and physiology produced by endogenous circadian systems can be properly timed. This is crucial for the advantages in natural selection that in the past gave rise to the evolution and today maintain the genetic basis of these systems. Entrainment requires the sensitivity of endogenous oscillators toward particular environmental cues as well as insensitivity toward others. The sensitivity toward light has been and continues to be a primary guide in probing and unraveling the physiology of circadian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Albers, H. E. (1986). Response of hamster circadian system to transitions between light and darkness. American Journal of Physiology, 250, R708–R711.

    PubMed  CAS  Google Scholar 

  • Amir, S., & Stewart, J. (1996). Resetting of the circadian clock by a conditioned stimulus. Nature, 379, 542–545.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, S. M. (1989). Melatonin and circadian control in mammals. Experientia, 45, 932.

    Article  PubMed  CAS  Google Scholar 

  • Aschoff, J. (1960). Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symposia on Quantitative Biology, 25, 11–28.

    Article  PubMed  CAS  Google Scholar 

  • Aschoff, J. (1979a). Circadian rhythms: General features and endocrinological aspects. In D. Krieger (Ed.), Endocrine rhythms (pp. 1–60). New York: Raven Press.

    Google Scholar 

  • Aschoff, J. (1979b). Circadian rhythms: Influences of internal and external factors on the period measured in constant conditions. Zeitschrii t für Tierpsychologie, 49, 225–249.

    Google Scholar 

  • Aschoff, J. (1981a). Circadian system properties. In F. Obal & G. Benedek (Eds.), Advances in physiological sciences-Environmental physiology (Vol. 18, pp. 1–17). Budapest: Akademiai Kiado.

    Google Scholar 

  • Aschoff, J. (1981b). Freerunning and entrained circadian rhythms. In J. Aschoff (Ed.), Handbook of behavioral neurobiology. Vol 4. Biological rhythms (pp. 81–93). New York: Plenum Press.

    Google Scholar 

  • Aschoff, J. (1994). On the aging of circadian systems. In T. Hiroshige & K. Honma (Eds.), Evolution of circadian clock (pp. 23–44). Sapporo, Japan: Hokkaido University Press.

    Google Scholar 

  • Aschoff, J., & Pohl, H. (1978). Phase relations between a circadian rhythm and its Zeitgeber within the range of entrainment. Naturwissenschaften, 65, 80–84.

    Article  PubMed  CAS  Google Scholar 

  • Aschoff, J., & Tokura, H. (1986). Circadian activity rhythms in squirrel monkeys: Entrainment by temperature cycles. Journal of Biological Rhythms, 1, 91–99.

    Article  PubMed  CAS  Google Scholar 

  • Aschoff, J., & Von Goetz, C. (1988). Masking of circadian activity rhythms in hamsters by darkness. Journal of Comparative Physiology A, 162, 559–562.

    Article  CAS  Google Scholar 

  • Aschoff, J., & Wever, R. (1965). Circadian rhythms of finches in light-dark cycles with interposed twilights. Comparative Biochemistry and Physiology, 16, 507–514.

    Article  PubMed  CAS  Google Scholar 

  • Aschoff, J., Sc Wever, R. (1966). Circadian period and phase angle difference in chaffinches (Fringilla coelebs L.). Comparative Biochemistry and Physiology, 18, 397–404.

    Article  PubMed  CAS  Google Scholar 

  • Aschoff, J., Hoffmann, K., Pohl, H., & Wever, R. (1979). Re-entrainment of circadian rhythms after phase-shifts of the zeitgeber. Chronobiologia, 2, 23–78.

    Google Scholar 

  • Aschoff, J., Daan, S., & Honma, K. (1982a). Zeitgebers, entrainment, and masking: Some unsettled questions. In J. Aschoff, S. Daan, & G. Groos (Eds.), Vertebrate circadian systems (pp. 13–24). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Aschoff, J., Gerecke, U., Von Goetz, C., Groos, G. A., & Turek, F. W. (1982b). Phase responses and characteristics of free-running activity rhythms in the golden hamster: Independence of the pineal gland. In J. Aschoff, S. Daan, & G. Groos (Eds.), Vertebrate circadian systems (pp. 129–140). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Boulos, Z., Macchi, M., Houpt, T. A., & Terman, M. (1996). Photic entrainment in hamsters: Effects of simulated twilights and nest box availability. Journal of Biological Rhythms, 11, 216–233.

    Article  PubMed  CAS  Google Scholar 

  • Bovet, J., & Oertli, E. (1974). Free-running circadian activity rhythms in free-living beaver Castor cana densis). Journal of Comparative Physiology, 92, 1–10.

    Article  Google Scholar 

  • Clifton, K. E. (1997). Mass spawning by green algae on coral reefs. Science, 275, 1116–1118.

    Article  PubMed  CAS  Google Scholar 

  • Daan, S., & Aschoff, J. (1975). Circadian rhythms of locomotor activity in captive birds and mammals: Their variations with season and latitude. Oecologia, 18, 269–316.

    Article  Google Scholar 

  • Daan, S., & Pittendrigh, C. S. (1976a). A functional analysis of circadian pacemakers in nocturnal rodents II. The variability of phase response curves. Journal of Comparative Physiology, 106, 253–266.

    Article  Google Scholar 

  • Daan, S., & Pittendrigh, C. S. (1976b). A functional analysis of circadian pacemakers in nocturnal rodents III. Heavy water and constant light: Homeostasis of frequency? Journal of Comparative Physiology, 106, 267–290.

    Article  Google Scholar 

  • Daan, S., Damassa, D., Pittendrigh, C., & Smith, E. (1975). An effect of castration and testosterone replacement on a circadian pacemaker in mice (Mus musculus). Proceedings of the National Academy of Sciences of the USA, 72, 3744–3747.

    Article  PubMed  CAS  Google Scholar 

  • Davis, F., & Gorski, R. (1988). Development of hamster circadian rhythms: Role of the maternal suprachiasmatic nucleus. Journal of Comparative Physiology A, 162, 601–610.

    Article  CAS  Google Scholar 

  • Davis, F., & Mannion, J. (1988). Entrainment of hamster pup circadian rhythms by prenatal melatonin injections to the mother. American Journal of Physiology, 255, R439–R448.

    PubMed  CAS  Google Scholar 

  • Davis, F., Suce, S., & Menaker, M. (1987). Activity and reproductive state in the hamster: Independent control by social stimuli and a circadian pacemaker. Physiology and Behavior, 40, 583–590.

    Article  PubMed  CAS  Google Scholar 

  • DeCoursey, P. (1960). Daily light sensitivity rhythm in a rodent. Science, 131, 33–35.

    Article  CAS  Google Scholar 

  • DeCoursey, P. (1972). LD ratios and the entrainment of circadian activity in a nocturnal and a diurnal rodent. Journal of Comparative Physiology, 78, 221–235.

    Article  Google Scholar 

  • DeCoursey, P. J. (1986). Light-sampling behavior in photoentrainment of a rodent circadian rhythm. Journal of Comparative Physiology A, 159, 161–169.

    Article  CAS  Google Scholar 

  • DeCoursey, P. J., & Menon, S. A. (1990). Circadian photo-entrainment in a nocturnal rodent: Quantitative measurement of light-sampling activity. Animal Behaviour, 41, 781–785.

    Article  Google Scholar 

  • Edgar, D. M., & Dement, W. C. (1991). Regularly scheduled voluntary exercise synchronizes the mouse circadian clock. American Journal of Physiology, 261, R928–R933.

    PubMed  CAS  Google Scholar 

  • Engelmann, W., Eger, I., Johnsson, A., Sc Karlsson, H. G. (1974). Effect of temperature pulses on the petal rhythm of Kalanchoe: An experimental and theoretical study. International Journal of Chrono-biology, 2, 347–358.

    Google Scholar 

  • Eriksson, L., & Van Veen, T. (1980). Circadian rhythms in the brown bullhead, Ictalurus nebulosus (Teleostei). Evidence for an endogenous rhythm in feeding, locomotor, and reaction time behaviour. Canadian Journal of Zoology, 58, 1899–1907.

    Article  Google Scholar 

  • Eskin, A. (1971). Some properties of the system controlling the circadian activity rhythm of sparrows. In M. Menaker (Ed.), Biochronometry (pp. 55–80). Washington DC: National Academy of Sciences.

    Google Scholar 

  • Gander, P. H. (1979). The circadian locomotor activity rhythm of Hemideina thoracica (Orthoptera): The effects of temperature perturbations. International Journal of Chronobiology, 6, 243–262.

    Google Scholar 

  • Gerkema, M. P., Daan, S., Wilbrink, M., Hop, M., & Van der Leest, E (1993). Phase control of ultradian feeding rhythms in the common vole (Microtus arvalis): The roles of light and the circadian system. Journal of Biological Rhythms, 8, 151–171.

    Article  PubMed  CAS  Google Scholar 

  • Gwinner, E. (1966). Entrainment of a circadian rhythm in birds by species-specific song cycles (Aves, Fringillidae; Carduelis spinus, Serinus serinus). Experientia, 22, 1–3.

    Article  Google Scholar 

  • Haarhaus, H. (1968). Zum Tagesrhythmus des Staren (Sturnus vulgaris) and der Schneeammer (Plectrophenax nivalis). Oecologia (Berlin), 1, 176–218.

    Article  Google Scholar 

  • Hardeland, R., Balzer, I., Poeggeler, B., Fuhrberg, B., Uria, H., Behrmann, G., Wolf, R., Meyer, T. J., & Reiter, R. J. (1995). On the primary functions of melatonin in evolution: Mediation of photo-periodic signals in a unicell, photooxidation, and scavenging of free radicals. Journal of Pineal Research, 18, 104–111.

    Article  PubMed  CAS  Google Scholar 

  • Hayden, P., & Lindberg, R. (1969). Circadian rhythm in mammalian body temperature entrained by cyclic pressure changes. Science, 164, 1288–1289.

    Article  PubMed  CAS  Google Scholar 

  • Heigl, S., & Gwinner, E. (1994). Periodic melatonin in the drinking water synchronizes circadian rhythms in sparrows. Naturwissenschaften, 81, 83–85.

    Article  CAS  Google Scholar 

  • Hoffmann, K. (1969). Zum Einfluss der Zeitgeberstaerke auf die Phasenlage der synchronisierten Periodik. Zeitschrift fiir vergleichende Physiologie, 62, 93–110.

    Article  Google Scholar 

  • Honma, S., Honma, K, & Hiroshige, T. (1985). Ontogeny of corticosterone and locomotor rhythms in rats: Effects of maternal rhythms and restricted daily feeding. In T. Hiroshige & K. Honma (Eds.), Circadian clocks and zeitgebers (pp. 167–178). Sapporo, Japan: Hokkaido Press.

    Google Scholar 

  • Hut, R. A., van Oort, B. E. H., & Daan, S. (1999). Natural entrainment without dawn and dusk: The case of the European ground squirrel (Spermophilus citellus). Journal of Biological Rhythms, 14, 290–299.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, C. H. (1991). An atlas of phase response curves for circadian and circatidal rhythms. Nashville, TN: Vanderbilt University.

    Google Scholar 

  • Johnson, C. H. (1992). Phase response curves: What can they tell us about circadian clocks? In T. Hiroshige & K. Honma (Eds.), Circadian clocks: From cell to human (pp. 209–249). Sapporo, Japan: Hokkaido University Press.

    Google Scholar 

  • Johnson, M. S. (1939). Effect of continuous light on periodic spontaneous activity of white-footed mice (Peromyscus). Journal of Experimental Zoology, 82, 315–328.

    Article  Google Scholar 

  • Kleinhoonte, A. (1928). De door het licht geregelde autonome bewegingen der Canavalia-bladeren. Ph.D. dissertation, Utrecht University, Utrecht, The Netherlands.

    Google Scholar 

  • Kleinknecht, S. (1985). Lack of social entrainment of free-running circadian activity rhythms in the Australian sugar glider (Petaurus brevicepx Marsupialia). Behavioral Ecology and Sociobiology, 16, 189–193.

    Article  Google Scholar 

  • Kramm, K. (1974). Phase control of circadian activity rhythms in ground squirrels. Naturwissenschaften, 61, 34.

    Article  PubMed  CAS  Google Scholar 

  • Kr ‘till, F. (1976). Zeitgebers for animals in the continuous daylight of high arctic summer. Oecologia (Berlin), 24, 149–157.

    Article  Google Scholar 

  • Lewy, A. J., Sack, R. L., Bood, M. L., Bauer, V. K., Cutler, N. S., & Thomas, K. H. (1994). Melatonin marks phase position and resets the endogenous circadian pacemaker in humans. In D. J. Chadwick & K. Ackrill (Eds.), Circadian clocks and their adjustment (pp. 303–317). New York: Wiley.

    Google Scholar 

  • Marimuthu, G., & Chandrashekaran, M. K. (1983). Social cues of a Hipposiderid bat inside a cave fail to entrain the circadian rhythm of an Emballonurid bat. Naturwissenschaften, 70, 620.

    Article  Google Scholar 

  • Marimuthu, G., Rajan, S., & Chandrashekaran, M. 1981). Social entrainment of the circadian rhythm in the flight activity of the microchiropteran bat Hipposideros speoris. Behavioral Ecology and Sociobiology, 8, 147–150.

    Article  Google Scholar 

  • Meijer, J. H., & DeVries, M. J. (1995). Light-induced phase shifts in onset and offset of running-wheel activity in the Syrian hamster. Journal of Biological Rhythms, 10, 4–16.

    Article  PubMed  CAS  Google Scholar 

  • Menaker, M., & Eskin, A. (1966). Entrainment of circadian rhythms by sound in Passer domesticus. Science, 154, 1579–1581.

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky, N. (1988). Phase response curves for social entrainment. Journal of Comparative Physiology A, 162, 35–46.

    Article  CAS  Google Scholar 

  • Mrosovsky, N. (1993). Tau changes after single nonphotic events. Chronobiology International, 10, 271–276.

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky, N., Boshes, M., Hallonquist, J., & Lang, K (1976). Circannual cycle of circadian cycles in a golden-mantled ground squirrel. Naturwissenschaften, 63, 298–299.

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky, N., Reebs, S., Honrado, G., & Salmon, P. (1989). Behavioural entrainment of circadian rhythms. Experientia, 45, 696–702.

    Article  PubMed  CAS  Google Scholar 

  • Oklejewicz, M., Hut, R. A., Daan, S., Loudon, A. S. I., & Stirland, A. J. (1997). Metabolic rate changes proportionally to circadian frequency in tau mutant Syrian hamsters. Journal of Biological Rhythms, 12, 413–422.

    PubMed  CAS  Google Scholar 

  • Pittendrigh, C. (1958). Perspectives in the study of biological clocks. In A. A. Buzatti-Traverso (Ed.), Perspectives in marine biology (pp. 239–268). San Francisco: University of California Press.

    Google Scholar 

  • Pittendrigh, C. (1967). Circadian systems I. The driving oscillation and its assay in Drosophila pseudoobscura. Proceedings of the National Academy of Sciences of the USA, 58, 1762–1767.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh, C. S. (1980). Some functional aspects of circadian pacemakers. In M. Suda, O. Hayaishi, & H. Nakagawa (Eds.), Biological rhythms and their central mechanism (pp. 3–12). New York: Elsevier Press.

    Google Scholar 

  • Pittendrigh, C. (1981a). Circadian organization and the photoperiodic phenomena. In B. Follett & D. Follett (Eds.), Biological clocks in seasonal reproductive cycles (pp. 1–35). Bristol, England: Scientechnica.

    Google Scholar 

  • Pittendrigh, C. S., (1981b). Circadian systems: Entrainment In J. Aschoff (Ed.), Handbook of behavioral neurobiology. Vol. 4. Biological rhythms (pp. 95-124). New York: Plenum Press.

    Google Scholar 

  • Pittendrigh, C. S., & Daan, S. (1976a). A functional analysis of circadian pacemakers in nocturnal rodents I. The stability and lability of spontaneous frequency. Journal of Comparative Physiology, 106, 223–252.

    Article  Google Scholar 

  • Pittendrigh, C. S., & Daan, S. (1976b). A functional analysis of circadian pacemakers in nocturnal rodents IV. Entrainment: Pacemaker as clock. Journal of Comparative Physiology, 106, 291–331.

    Article  Google Scholar 

  • Pittendrigh, C. S., & Daan, S. (1976c). A functional analysis of circadian pacemakers in nocturnal rodents V. Pacemaker structure: A clock for all seasons. Journal of Comparative Physiology, 106, 333–355.

    Article  Google Scholar 

  • Pittendrigh, C., & Minis, D. (1964). The entrainment of circadian oscillations by light and their role as photoperiodic clocks. American Naturalist, 48, 261–294.

    Google Scholar 

  • Roberts, S. (1962). Circadian activity rhythms in cockroaches II. Entrainment and phase shifting. Journal of Cellular and Comparative Physiology, 59, 175–186.

    Article  Google Scholar 

  • Roenneberg, T., & Rehman,J. (1996). Nitrate, a nonphotic signal for the circadian system. FASEB Journal, 10, 1443–1447.

    PubMed  CAS  Google Scholar 

  • Rusak, B., Mistlberger, R. E., Losier, B., & Jones, C. H. (1988). Daily hoarding opportunity entrains the pacemaker for hamster activity rhythms. journal of Comparative Physiology, A164, 165–171.

    Google Scholar 

  • Scheer, G. (1952). Beobachtungen and Untersuchungen über die Abhängigkeit des Frühgesanges der Vögel von inneren and äusseren Faktoren. Biologische Abhandlungen, 3/4, 1–68.

    Google Scholar 

  • Strubbe, J. H., Spited, N.J., & Prins, A. J. A. (1986). Effect of skeleton photoperiod and food availability on the circadian pattern of feeding and drinking in rats. Physiology and Behavior, 36, 647–651.

    Article  PubMed  CAS  Google Scholar 

  • Subbaraj, R., & Chandrashekaran, M. (1981). Mirror imaging phase response curves obtained for the circadian rhythm of a bat with single steps of light and darkness. Journal of Interdisciplinary Cycle Research, 12, 305–312.

    Article  Google Scholar 

  • Swade, R. H. (1969). Circadian rhythms in fluctuating light cycles: Toward a new model of entrainment. Journal of Theoretical Biology, 24, 227–239.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K, & Sasaki, Y. (1985). Entraining mechanism of endogenous rhythm of blinded rat pups by the nursing mother. In T. Hiroshige & K Honma (Eds.), Circadian clocks and zeitgebers (pp. 157–166). Sapporo, Japan: Hokkaido University Press.

    Google Scholar 

  • Takahashi, K, Inoue, K, Kobayashi, K, Hayafuji, C., Nakamura, Y., & Takahashi, Y. (1978). Mutual influence of rats having different circadian rhythm of adrenocortical activity. American Journal of Physiology, 234, E515–E520.

    CAS  Google Scholar 

  • Terman, M., Reme, C., & Wirz-Justice, A. (1991). The visual input stage of the mammalian circadian pacemaking system: II. The effect of light and drugs on retinal function. Journal of Biological Rhythms, 6, 31–48.

    Article  PubMed  CAS  Google Scholar 

  • Turek, F. W. (1989). Effects of stimulated physical activity on the circadian pacemaker of vertebrates. Journal of Biological Rhythms, 4, 135–148.

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan, N., & Chandrashekaran, M. (1985). Cycles of presence and absence of mother mouse entrain the circadian clock of pups. Nature, 317, 530–531.

    Article  PubMed  CAS  Google Scholar 

  • Von Holst, E. (1939). Die relative Koordination als Phänomen and als Methode zentralnervöser Funktionsanalyse. Ergebnisse der Physiologie, 42, 228–306.

    Google Scholar 

  • Voûte, A. (1972). Bijdrage tot de oecologie van de Meervleermuis (Myotis dasycneme (Boie, 1825)). Ph.D. dissertation, Utrecht University, Utrecht, The Netherlands.

    Google Scholar 

  • Wever, R. (1960). Possibilities of phase-control, demonstrated by an electronic model. Cold Spring Harbor Symposia on Quantitative Biology, 25, 197–206.

    Article  PubMed  CAS  Google Scholar 

  • Wever, R. (1967). Zum Einfluss der Dämmerung auf die circadiane Periodik. Zeitschrift für vergleichende Physiologie, 55, 255–277.

    Google Scholar 

  • Wever, R. (1972). Virtual synchronisation towards the limits of the range of entrainment. Journal of Theoretical Biology, 36, 119–132.

    Article  PubMed  CAS  Google Scholar 

  • Wiedenmann, G. (1977). Two activity peaks in circadian rhythms of cockroach Leucophaea maderae. Journal of Interdisciplinary Cycle Research, 8, 378–383.

    Article  Google Scholar 

  • Winfree, A. (1970). Integrated view of resetting a circadian clock. Journal of Theoretical Biology, 28, 327–374.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman, W. F., Pittendrigh, C. S., & Pavlidis, T (1968). Temperature compensation of the circadianoscillation in Drosophila pseudoobscura and its entrainment by temperature cycles. Journal of Insect Physiology, 14, 669–684.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daan, S., Aschoff, J. (2001). The Entrainment of Circadian Systems. In: Takahashi, J.S., Turek, F.W., Moore, R.Y. (eds) Circadian Clocks. Handbook of Behavioral Neurobiology, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1201-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1201-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5438-3

  • Online ISBN: 978-1-4615-1201-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics