Skip to main content

Development of Mammalian Circadian Rhythms

  • Chapter
Circadian Clocks

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 12))

Abstract

The goal of developmental biology is to understand the origins of biological organization as it unfolds within each generation. Investigations of development often begin with describing how normal development proceeds, then ask how the observed processes or events are regulated. At the level of the whole organism, the most fundamental of such questions (even if oversimplified) is to ask whether the behavior, structure, or physiologic process of interest is inborn or is in some way shaped by the external environment under which the organism develops. This was one of the earliest questions to be asked about circadian rhythms. Charles Darwin contested the view he attributed to Wilhelm Pfeffer that the persistent rhythms of leaf movements in plants under constant conditions should be attributed to “ ‘Nachwirkung’ or the aftereffects of light and darkness.” Darwin concluded instead that “the periodicity of their movements is to a certain extent inherited” (Darwin, 1896). Seventy-five years later, as the modern field of circadian biology was being established, experiments with several different organisms investigated whether organisms needed to be exposed to 24-hour cycles in light and dark during development in order to express circadian rhythms when mature (Aschoff, 1960; Pittendrigh, 1954). The conclusion from these studies was that the expression of circadian rhythms is “independent of any ontogenetic learning process” (Pittendrigh, 1954). For the whole organism, this conclusion is still appropriate today, but as the regulation of circadian rhythmicity continues to be elucidated, the general question persists.Understanding the relative contributions of intrinsic programs and environmental effects in guiding the differentiation of specific features of circadian organization remains a goal of developmental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Altman, J., & Bayer, S. A. (1978a). Development of the diencephalon in the rat I. Autoradiographic study of the time of origin and settling patterns of neurons of the hypothalamus. Journal of Comparative Neurology, 182, 945–972.

    PubMed  CAS  Google Scholar 

  • Altman, J., & Bayer, S. A. (1978b). Development of the diencephalon in the rat II. Correlation of the embryonic development of the hypothalamus with the time of origin of its neurons. Journal of Comparative Neurology, 182, 973–994.

    PubMed  CAS  Google Scholar 

  • Altman, J., & Bayer, S. A. (1986). The development of the rat hypothalamus. Advances in Anatomy Embryology and Cell Biology, 100, 1–178.

    CAS  Google Scholar 

  • Altman, J., & Bayer, S. A. (1995). Atlas of prenatal rat brain development. Boca Raton, FL: CRC Press. Antoch, M. P., Song, E. J., Chang, A. M., Vitaterna, M. H., Zhao, Y. L., Wilsbacher, L. D., Sangoram, A.M.

    Google Scholar 

  • King, D. P., Pinto, L. H., & Takahashi, J. S. (1997). Functional identification of the mouse circadian clock gene by transgenic BAC rescue. Cell, 89, 655–667.

    PubMed  Google Scholar 

  • Arduini, D., Rizzo, G., Parlad, E., Dell’Acqua, S., Romanini, C., & Mancuso, S. (1987). Loss of circadian rhythms of fetal behaviour in a totally adrenalectomized pregnant woman. Gynecological and Obstetrical Investigations, 23, 226–229.

    CAS  Google Scholar 

  • Armstrong, B. G., Nolin, A. D., & McDonald, A. D. (1989). Work in pregnancy and birth weight for gestational age. British Journal of Industrial Medicine, 46, 196–199.

    PubMed  CAS  Google Scholar 

  • Armstrong, S. M. (1989). Melatonin and circadian control in mammals Experientia, 45, 933–938.

    Google Scholar 

  • Aschoff, J. (1960). Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symposium on Quantitative Biology, 25, 11–28.

    Google Scholar 

  • Aschoff, J., Gerecke, U., & Weyer, R. (1967). Desynchronization of human circadian rhythms. Japanese Journal of Physiology, 17, 450–457.

    PubMed  CAS  Google Scholar 

  • Axelsson, G., Rylander, R., & Man, I. (1989). Outcome of pregnancy in relation to irregular and inconvenient work schedules. British Journal of Industrial Medicine, 46, 393–398.

    PubMed  CAS  Google Scholar 

  • Ban, Y., Shigeyoshi, Y., & Okamura, H. (1997). Development of vasoactive intestinal peptide mRNA rhythm in the rat suprchiasmatic nucleus. Journal of Neuroscience, 17, 3920–3931.

    PubMed  CAS  Google Scholar 

  • Barr, M. J. (1973). Prenatal growth of wistar rats: Circadian periodicity of fetal growth late in gestation. Teratology, 7, 283–287.

    Google Scholar 

  • Botchkina, G. I. & Morin, L. P. (1993). Development of the hamster serotoninergic system: Cell groups and diencephalic projections. Journal of Comparative Neurology, 338, 405–431.

    PubMed  CAS  Google Scholar 

  • Botchkina, G. I., & Morin, L. P. (1995a). Ontogeny of radial glia, astrocytes and vasoactive intestinal peptide immunoreactive neurons in hamster suprachiasmatic nucleus. Developmental Brain Research, 86, 48–56.

    PubMed  CAS  Google Scholar 

  • Botchkina, G. I., & Morin, L. P. (1995b). Organization of permanent and transient neuropeptide Y-immunoreactive neuron groups and fiber systems in the developing hamster diencephalon.Journal of Comparative Neurology, 357, 573–602.

    PubMed  CAS  Google Scholar 

  • Broekhuizen, S., & Maaskamp, F. (1980). Behaviour of does and leverets of the European hare (Lepus europaeus) whilst nursing. Journal of Zoology (London), 191, 487–501.

    Google Scholar 

  • Cambras, T., & Diez-Noguera, A. (1991). Evolution of rat motor activity circadian rhythm under three different light patterns. Physiology and Behavior, 49, 63–68.

    PubMed  CAS  Google Scholar 

  • Card, J. P., & Moore, R. Y. (1984). The suprachiasmatic nucleus of the golden hamster: Immunohistochemical analysis of cell and fiber distribution. Neuroscience, 13, 415–431.

    PubMed  CAS  Google Scholar 

  • Carlson, L. L., Weaver, D. R., & Reppert, S. M. (1991). Melatonin receptors and signal transduction during development in Siberian hamsters (Phodopus sungorus). Developmental Brain Research, 59, 83–88.

    PubMed  CAS  Google Scholar 

  • Cassone, V. M., Speh, J. C., Card, J. P., & Moore, R. Y. (1988). Comparative anatomy of the mammalian hypothalmic suprachiasmatic nucleus. Journal of Biological Rhythms, 3, 71–91.

    PubMed  CAS  Google Scholar 

  • Chamberlain, P. E, Manning, F. A., Morrison, I., & Lange, I. R. (1984). Circadian rhythm in bladder volumes in the term human fetus. Obstetrics and Gynecology, 64, 657–660.

    PubMed  CAS  Google Scholar 

  • Clegg, D. A., O’Hara, B. E, Heller, H. C., & Kilduff, T. S. (1995). Nicotine administration differentially affects gene expression in the maternal and fetal circadian clock. Developmental Brain Research, 84, 46–54.

    PubMed  CAS  Google Scholar 

  • Constandil, L., Parraguez, V. H., Torrealba, F., Valenzuela, G., & Serón-Ferré, M. (1995). Day-night changes in c fos expression in the fetal sheep suprachiasmatic nucleus at late gestation. Reproduction Fertility and Development, Z 411–413.

    Google Scholar 

  • Coons, S., & Guilleminault, C. (1984). Development of consolidated sleep and wakeful periods in relation to the day/night cycle in infancy. Developmental Medicine and Child Neurology, 26, 169–176.

    PubMed  CAS  Google Scholar 

  • Cooper, Z. K. (1939). Mitotic rhythm in human epidermis. Journal oflnvestigativeDermatology, 2, 289–300.

    Google Scholar 

  • Cooper, H. M., Tessonneaud, A., Caldani, A., Locatelli, A., Richard, S., & Viguier-Martinez, M.-C. (1993).Morphology and distribution of retinal ganglion cells (RGC) projecting to the suprachiasmatic nucleus in the sheep. Society for Neuroscience Abstracts, 11, 1704.

    Google Scholar 

  • Darwin, C. (1896). The power of movement in plants. New York: Appleton.

    Google Scholar 

  • Davis, F, C. (1981). Ontogeny of circadian rhythms. In J. Aschoff (Ed.), Handbook of behavioral neurobiology, Vol. 4, Biological rhythms (pp. 257–274). New York: Plenum Press.

    Google Scholar 

  • Davis, F. C. (1982). Development of the suprachiasmatic nuclei and other circadian pacemakers. In D. C. Klein (Ed.), Melatonin rhythm generating system: Developmental aspects (pp. 1–19). Basel: Karger

    Google Scholar 

  • Davis, F. C. (1989). Daily variation in maternal and fetal weight gain in mice and hamsters. Journal of Experimental Zoology, 250, 273–282.

    PubMed  CAS  Google Scholar 

  • Davis, F. C., & Gorski, R. A. (1984). Unilateral lesions of the hamster suprachiasmatic nuclei: Evidence for redundant control of circadian rhythms. Journal of Comparative Physiology A, 154, 221–232.

    Google Scholar 

  • Davis, F. C., & Gorski, R. A. (1986). Development of hamster circadian rhythms: Prenatal entrainment of the pacemaker. Journal of Biological Rhythms, 1, 77–89.

    Google Scholar 

  • Davis, E C., & Gorski, R. A. (1988). Development of hamster circadian rhythms: Role of the maternal suprachiasmatic nucleus. Journal of Comparative Physiology A, 162, 601–610.

    CAS  Google Scholar 

  • Davis, F. C., & Mannion, J. (1988). Entrainment of hamster pup circadian rhythms by prenatal melatonin injections to the mother. American Journal of Physiology, 255, R439–R448.

    PubMed  CAS  Google Scholar 

  • Davis, F. C., & Menaker, M. (1981). Development of the mouse circadian pacemaker: Independence from environmental cycles. Journal of Comparative Physiology A, 143, 527–539.

    Google Scholar 

  • Davis, F. C., & Viswanathan, N. (1996). The effect of transplanting one or two suprachiasmatic nuclei on the period of the restored rhythm. Journal of Biological Rhythms, 11, 291–301.

    PubMed  CAS  Google Scholar 

  • Davis, E C., Darrow, J. M., & Menaker, M. (1983). Sex difference in the circadian control of hamster wheel-running activity. American Journal of Physiology, 244, R93–R105.

    PubMed  CAS  Google Scholar 

  • Davis, F. C., Boada, R., & LeDeaux, J. (1990). Neurogenesis of the hamster suprachiasmatic nucleus. Brain Research, 519, 192–199.

    PubMed  CAS  Google Scholar 

  • Davis, F. C., Frank, M. G., & Heller, H. C. (1999). Ontogeny of sleep and circadian rhythms. In F. W. Turek & P. C. Zee (Eds.), Regulation of sleep and circadian rhythms, Vol.133Lung biology in health and disease. New York: Marcel Dekker.

    Google Scholar 

  • Deacon, S., & Arendt, J. (1995). Melatonin-induced temperature suppression and its acute phase-shifting effects correlate in a dose-dependent manner in humans. Brain Research, 688, 77–85.

    PubMed  CAS  Google Scholar 

  • Decavel, C., & Van den Pol, A. N. (1990). GABA: A dominant neurotransmitter in the hypothalamus. Journal of Comparative Neurology, 302, 1019–1037.

    PubMed  CAS  Google Scholar 

  • Deguchi, T. (1975). Ontogenesis of a biological clock for serotonin: Acetyl coenzyme A N-acetyltransfer-ase in pineal gland of rat. Proceedings of the National Academy of Sciences of the USA, 72, 2814–2818.

    PubMed  CAS  Google Scholar 

  • De Vries, G. J., Buijs, R. M., & Swaab, D. F. (1981). Ontogeny of the vasopressinergic neurons of the suprachiasmatic nucleus and their extrahypothalamic projections in the rat brain-Presence of a sex difference in the lateral septum. Brain Research, 218, 67–78.

    PubMed  Google Scholar 

  • de Vries, J. I. P., Visser, G. H. A., Mulder, E. J. H., & Prechtl, H. F. R. (1987). Diurnal and other variations in fetal movement and heart rate patterns at 20–22 weeks. Early Human Development, 15, 333–348.

    PubMed  Google Scholar 

  • Drucker-Colin, R., Aguilar-Roblero, R., Garcia-Hernandez, F., Fernandez-Cancino, F., & Rattoni, F. B.(1984). Fetal suprachiasmatic nucleus transplants: Diurnal rhythm recovery of lesioned rats. Brain Research, 311, 353–357.

    Google Scholar 

  • Duffield, G. E., Dickerson, J. M., Alexander, I. H. M., & Ebling, E J. P. (1995). Ontogeny of a photic response in the suprachiasmatic nucleus in the Siberian hamster (phodopus sungorus). European Journal of Neuroscience, 7, 1089–1096.

    PubMed  CAS  Google Scholar 

  • Duncan, M. J., & Davis, F. C. (1993). Developmental appearance and age related changes in specific 2-[1251]iodomelatonin binding sites in the suprachiasmatic nuclei of female Syrian hamsters. Developmental Brain Research, 73, 205–212.

    PubMed  CAS  Google Scholar 

  • Duncan, M. J., Banister, M. J., & Reppert, S. M. (1986). Developmental appearance of light-dark entrainment in the rat. Brain Research, 369, 326–330.

    PubMed  CAS  Google Scholar 

  • Ehrstrom, C. (1984). Circadian rhythm of fetal movements. Acta Obstetrica et Gynecologica Scandinavica, 63, 539–541.

    CAS  Google Scholar 

  • Elliott, J. A., & Goldman, B. D. (1989). Reception of photoperiodic information by fetal Siberian hamsters: Role of the mother’s pineal gland. Journal of Experimental Zoology, 252, 237–244.

    PubMed  CAS  Google Scholar 

  • Ellison, N., Weller, J. L., & Klein, D. C. (1972). Development of a circadian rhythm in the activity of pineal seritonin N-acetyltransferase. Journal of Neurochemistry, 19, 1335–1341.

    PubMed  CAS  Google Scholar 

  • Fletcher, K. L., Leung, K., Myers, M. M., & Stark, R. I. (1996). Diurnal rhythms in cardiorespiratory function of the fetal baboon. Early Human Development, 46, 27–42.

    PubMed  CAS  Google Scholar 

  • Fuchs, J. L., & Moore, R. Y. (1980). Development of circadian rhythmicity and light responsiveness in the rat suprachiasmatic nucleus: A study using the 2-deoxy[1–14C] glucose method. Proceedings of the National Academy of Sciences, 77, 1204–1208.

    CAS  Google Scholar 

  • Ganzhorn, J. U., & Wright, P. C. (1994). Temporal patterns in primate leaf eating: The possible role of leaf chemistry. Folia Primatologica, 63, 203–208.

    CAS  Google Scholar 

  • Gibson, A. A. M. (1992). Current epidemiology of SIDS. Journal of Clinical Pathology, 45 (Supplement), 7–10.

    PubMed  CAS  Google Scholar 

  • Glotzbach, S. T., Sollars, P., Ariagno, R. L., & Pickard, G. E. (1992). Development of the human retinohypothalamic tract. Society for Neuroscience Abstracts, 18, 875.

    Google Scholar 

  • Glotzbach, S. F., Edgar, D. M., Boeddiker, M., & Ariagno, R. L. (1994). Biological rhythmicity in normal infants during the first 3 months of life. Pediatrics, 94, 482–488.

    PubMed  CAS  Google Scholar 

  • Glotzbach, S. E, Edgar, D. M., & Ariagno, R. L. (1995). Biological rhythmicity in preterm infants prior to discharge from neonatal intensive care. Pediatrics, 95, 4231–237.

    Google Scholar 

  • Griffioen, H. A., Duindam, H., Van der Woude, T. P., Rietveld, W. J., & Boer, G. J. (1993). Functional development of fetal suprachiasmatic nucleus grafts in suprachiasmatic nucleus-lesioned rats. Brain Research Bulletin, 31, 145–160.

    PubMed  CAS  Google Scholar 

  • Grosse, J., & Davis, F. C. (1998). Melatonin entrains restored circadian activity rhythms of Syrian hamsters bearing fetal SCN grafts. Journal of Neuroscience, 18, 8032–8037.

    PubMed  CAS  Google Scholar 

  • Grosse, J., Velickovic, A., & Davis, E C. (1996). Entrainment of Syrian hamster circadian activity rhythms by neonatal melatonin injections. American Journal of Physiology, 270, R533–R540.

    PubMed  CAS  Google Scholar 

  • Güldner, F.-H. (1978). Synapses of optic nerve afferents in the rat suprachiasmatic nucleus. I. Identifica-tion, qualitative description, development and distribution. Cell and Tissue Research, 194, 17–35.

    PubMed  Google Scholar 

  • He, X., Treacy, M. N., Simmons, D. M., Ingraham, H. A., Swanson, L. W., & Rosenfeld, M. G. (1989).Expression of a large family of POU-domain regulatory genes in mammalian brain development.Nature, 340, 35–42.

    PubMed  CAS  Google Scholar 

  • Hellbrugge, T., Lange, J. E., Rutenfranz, J., & Stehr, K. (1964). Circadian periodicity of physiological functions in different stages of infancy and childhood. Annals of the New York Academy of Sciences, 117, 361–373.

    Google Scholar 

  • Hiroshige, T., Honma, K., & Watanabe, K. (1982a). Possible zeitgebers for external entrainment of the circadain rhythm of plasma corticosterone in blind infantile rats. Journal of Physiology, 325, 507–519.

    PubMed  CAS  Google Scholar 

  • Hiroshige, T., Honma, K., & Watanabe, K. (1982b). Prenatal onset and maternal modifications of the circadian rhythm of plasma corticosterone in blind infantile rats. Journal of Physiology, 325, 521–532.

    PubMed  CAS  Google Scholar 

  • Hoffman, K. (1959). Die aktivitatsperiodik von im 18- und 36-stunden-tag erfruteten eidechsen. Zeitschriftfur vergleichende Physiologie, 42, 422–432.

    Google Scholar 

  • Holtzman, R. L., Malach, R., & Gozes, I. (1989). Disruption of the optic pathway during development affects vasoactive intestinal peptide mRNA expression. New Biologist, 1, 215–221.

    PubMed  CAS  Google Scholar 

  • Honma, S., Honma, K, Shirakawa, T., & Hiroshige, T. (1984). Effects of elimination of maternal ceircadian rhythms during pregnancy on the postnatal development of circadian corticosterone rhythm in blinded infantile rats. Endocrinology, 114, 44–50.

    PubMed  CAS  Google Scholar 

  • Honnebier, M. B. O. M., Swaab, D. F & Mirmiran, M. (1989). Diurnal rhythmicity during early human development. In S. M. Reppert (Ed.), Development of circadian rhythmicity and photoperiodism in mammals (pp. 221–244). Ithaca, NY: Perinatology Press

    Google Scholar 

  • Horton, T. H. (1983). Growth and maturation in Microtus montanus: Effects of photoperiods before and after weaning. Canadian Journal of Zoology, 62, 1741–1746.

    Google Scholar 

  • Hudson, R., & Distel, H. (1989). Temporal pattern of suckling in rabbit pups: A model of circadian synchrony between mother and young. In S. M. Reppert (Ed.), Development of rhythmicity and photoperiodism in mammals (pp. 83–102). Ithaca, NY: Perinatology Press

    Google Scholar 

  • Ibuka, N. (1987). Circadian rhythms in sleep-wakefullness and wheel-running activity in a congenitally anophthalmic rat mutant. Physiology and Behavior, 39, 321–326.

    PubMed  CAS  Google Scholar 

  • Illnerovã, H., Buresovã, M., & Presl, J. (1993). Melatonin rhythm in human milk. Journal of Clinical Endocrinology and Metabolism, 77, 838–841.

    PubMed  Google Scholar 

  • Inouye, I. T., & Kawamura, H. (1979). Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proceedings of the National Academy of Sciences of the USA, 76, 5962–5966.

    PubMed  CAS  Google Scholar 

  • Iuvone, P. M. & Gan, J. (1995). Functional interaction of melatonin receptors and Dl dopamine receptors in cultured chick retinal neurons. Journal of Neuroscience, 15, 2179–2185.

    PubMed  CAS  Google Scholar 

  • Jaldo-Alba, F., Munoz-Hoyos, A., Molina-Carballo, A., Molina-Font, J. A., & Acuna-Castroviejo, D. (1993). Light deprivation increases plasma levels of melatonin during the first 72 h of life in human infants. Acta Endocrinologica, 129, 442–445.

    PubMed  CAS  Google Scholar 

  • Jilge, B. (1993). The ontogeny of circadian rhythms in the rabbit. Journal of Biological Rhythms, 8, 247–260.

    PubMed  CAS  Google Scholar 

  • Jilge, B. (1995). Ontogeny of the rabbit’s circadian rhythms without an external zeitgeber. Physiology and Behavior, 58, 131–140.

    PubMed  CAS  Google Scholar 

  • Johnson, R. F., Moore, R. Y., & Morin, L. P. (1988). Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract. Brain Research, 460, 297–313.

    PubMed  CAS  Google Scholar 

  • Johnson, R. F., Morin, L. P., & Moore, R. Y. (1988). Retinohypothalamic projections in the hamster and rat demonstrated using cholera toxin. Brain Research, 462, 301–312.

    PubMed  CAS  Google Scholar 

  • Kagotani, Y., Hashimoto, T., Tsuruo, Y., Kawano, H., Daikoku, S., & Chihara, K. (1989). Development of the neuronal system containing neuropeptide Y in the rat hypothalamus. International Journal of Developmental Neuroscience, 7, 359–374.

    PubMed  CAS  Google Scholar 

  • Kaufman, C. M., & Menaker, M. (1993). Effect of transplanting suprachiasmatic nuclei from donors of different ages into completely SCN lesioned hamsters. Journal of Neural Transplantation and Plasticity, 4, 257–265.

    PubMed  CAS  Google Scholar 

  • Kaufman, C. M., & Menaker, M. (1994). Ontogeny of light-induced Fos-like immunoreactivity in the hamster suprachiasmatic nucleus. Brain Research, 633, 162–166.

    PubMed  CAS  Google Scholar 

  • Kennaway, D. J., Stamp, G. E., & Goble, F. C. (1992). Development of melatonin production in infants and the impact of prematurity. Journal of Clinical Endocrinology and Metabolism, 75, 367–369.

    PubMed  CAS  Google Scholar 

  • Kennaway, D. J., Goble, F. C., & Stamp, G. E. (1996). Factors influencing the development of melatonin rhythmicity in humans. Journal of Clinical Endocrinology and Metabolism, 81, 1525–1532.

    PubMed  CAS  Google Scholar 

  • King, D. P., Zhao, Y. L., Sangoram, A. M., Wilsbacher, L. D., Tanaka, M., Antoch, M. P., Steeves, T. D. L., Vitaterna, M. H., Kornhauser, J. M., Lowrey, P. L., Turek, F. W., & Takahashi, J. S. (1997). Positional cloning of the mouse circadian clock gene. Cell, 89, 641–653.

    PubMed  CAS  Google Scholar 

  • Klein, D. C. (1972). Evidence for placental transfer of 3H-acetyl-melatonin. Nature, 237, 117–119. Kleitman, N. & Engelmann, T. G. (1953). Sleep characteristics of infants. Journal of Applied Physiology, 6, 269–282.

    Google Scholar 

  • Koritsanszky, S. (1981). Fetal and early postnatal cyto-and synaptogenesis in the suprachiasmatic nucleus of the rat hypothalamus. Acta Morphologica Academiae Scientiarum Hungaricae, 29, 227–239.

    PubMed  CAS  Google Scholar 

  • Krieger, D. T. (1972). Circadian corticosteroid periodicity: Critical period for abolition by neonatal injection of corticosteroid. Science, 178, 1205–1207.

    PubMed  CAS  Google Scholar 

  • Krieger, D. T., & Hauser, H. (1977). Suprachiasmatic nuclear lesions do not abolish food-shifted circadian adrenal and temperature rhythmicity. Science, 197, 398–399.

    Google Scholar 

  • Kuhlman, S., Watts, A. G., Sanchez-Watts, G., & Davis, F. C. (1995). Developmental expression of preprovasoactive intestinal polypeptide (VIP) mRNA in the Syrian hamster suprachiasmatic nucleus. Society for Neuroscience Abstracts, 21, 452.

    Google Scholar 

  • Laemle, L. K., & Rusa, R. (1992). VIP-like immunoreactivity in the suprachiasmatic nuclei of a mutant anophthalmic mouse. Brain Research, 589, 124–128.

    PubMed  CAS  Google Scholar 

  • Laemle, L. K., Repke, K B., Hawkes, R., & Rice, F. L. (1991). Synaptogenesis in the rat suprachiasmatic nucleus: A light microscopic immunocytochemical survey. Brain Research, 544, 108–117.

    PubMed  CAS  Google Scholar 

  • Leard, L. E., Macdonald, E. S., Heller, H. C., & Kilduff, T. S. (1994). Ontogeny of photic-induced c fos mRNA expression in rat suprachiasmatic nuclei. Neuroreport, 5, 2683–2687.

    PubMed  CAS  Google Scholar 

  • Lehman, M. N., Silver, R., Gladstone, W. R., Kahn, R. M., Gibson, M., & Bittman, E. L. (1987). Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. Journal of Neuroscience, 7, 1626–1638.

    PubMed  CAS  Google Scholar 

  • Lenn, N. J., Beebe, B., Sc Moore, R. Y. (1977). Postnatal development of the suprachiasmatic hypothalamic nucleus of the rat. Cell and Tissue Research, 178, 463–475.

    PubMed  CAS  Google Scholar 

  • LeSauter, J., Lehman, M. N., & Silver, R. (1996). Restoration of circadian rhythmicity by transplants of SCN “micropunches.” Journal of Biological Rhythms, 11, 163–171.

    PubMed  CAS  Google Scholar 

  • Lewy, A. J. (1992). Melatonin shifts human circadian rhythms according to a phase-response curve. Chronobiology International, 9, 380–392.

    PubMed  CAS  Google Scholar 

  • Magnin, M., Cooper, H. M., & Mick, G. (1989). Retinohypothalamic pathway: A breach in the law of Newton-Muller-Gudden? Brain Research, 488, 390–397.

    PubMed  CAS  Google Scholar 

  • Mai, J. K., Kedziora, O., Teckhaus, L., & Sofroniew, M. V. (1991). Evidence for subdivisions in the human suprachiasmatic nucleus. Journal of Comparative Neurology, 305, 508–525.

    PubMed  CAS  Google Scholar 

  • Mann, N. P., Haddow, R., Stokes, L., Goodley, S. & Rutter, N. (1986). Effect of night and day on preterm infants in a newborn nursery: Randomised trial. British Journal of Medicine, 293 1265–1267.

    CAS  Google Scholar 

  • Martin du Pan, R. (1974). Some clinical applications of our knowledge of the evolution of the circadian rhythm in infants. In L. E. Scheving, F. Halberg, & J. E. Pauly (Eds.), Chronobiology (pp. 342–347). Tokyo: Iguku Shoin.

    Google Scholar 

  • McMillen, I. C., & Nowak, R. (1989). Maternal pinealectomy abolishes the diurnal rhythm in plasma melatonin concentrations in the fetal sheep and pregnant ewe during late gestation. Journal ofEndocrinology, 120, 459–464.

    CAS  Google Scholar 

  • McMillen, I. C., Kok, J. S. M., Adamson, T.M., Deayton, J. M., & Nowak, R. (1991). Development of circadian sleep-wake rhythms in preterm and full-term infants. Pediatric Research, 29, 381–384.

    PubMed  CAS  Google Scholar 

  • Miller, J. D., Morin, L. P., Schwartz, F.J., & Moore, R. Y. (1996). New insights into the mammalian circadian clock. Sleep, 19, 641–667.

    PubMed  CAS  Google Scholar 

  • Miller, M. W. (1992). Circadian rhythm of cell proliferation in the telencephalic ventricular zone: Effect of in utero exposure to ethanol. Brain Research, 595, 17–24.

    PubMed  CAS  Google Scholar 

  • Mirmiran, M., & Kok, J. H. (1991). Circadian rhythms in early human development. Early Human Development, 26, 121–128.

    PubMed  CAS  Google Scholar 

  • Moore, R. Y. (1973). Retinohypothalamic projection in mammals: A comparative study. Brain Research, 49, 403–409.

    PubMed  CAS  Google Scholar 

  • Moore, R. Y., & Bernstein, M. E. (1989). Synaptogenesis in the rat suprachiasmatic nucleus demonstrated by electron microscopy and synapsin I immunoreactivity. Journal of Neuroscience, 9, 2151–2162.

    PubMed  CAS  Google Scholar 

  • Moore, R. Y., & Lenn, N. J. (1972). A retinohypothalamic projection in the rat. Journal of Comparative Neurology, 146, 1–14.

    PubMed  CAS  Google Scholar 

  • Moore, R. Y., Speh, J. C., & Card, J. P. (1995). The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells. Journal of Comparative Neurology, 352, 351–366.

    PubMed  CAS  Google Scholar 

  • Morin, L. P. (1994). The circadian visual system. Brain Research Reviews, 19, 102–127.

    PubMed  CAS  Google Scholar 

  • Mosko, S., & Moore, R. Y. (1978). Neonatal suprachiasmatic nucleus ablation: Absence of functional and morphological plasticity. Proceedings of the National Academy of Sciences of the USA, 75, 6243–6246.

    PubMed  CAS  Google Scholar 

  • Mosko, S., & Moore, R. Y. (1979). Retinohypothalamic tract development: Alteration by suprachiasmatic lesions in the neonatal rat. Brain Research, 164, 1–15.

    Google Scholar 

  • Niimi, K, Harada, I., Kusaka, Y., & Kishi, S. (1962). The ontogenetic development of the diencephalon of the mouse. Tokushima Journal of Experimental Medicine, 8, 203–238.

    Google Scholar 

  • Ninkina, N. N. (1995). Nerve growth factor-regulated properties of sensory neurones in Oct-2 null mutant mice. Molecular Brain Research, 33, 233–244.

    PubMed  CAS  Google Scholar 

  • Noguchi, T., Sugisaki, T., Kudo, M., & Satoh, I. (1986). Retarded growth of the suprachiasmatic nucleus and pineal body in dw and lit dwarf mice. Developmental Brain Research, 26, 161–172.

    Google Scholar 

  • Nuesslein, B., & Schmidt, I. (1990). Development of circadian cycle of core temperature in juvenile rats. American Journal of Physiology, 259, R270–R276.

    PubMed  CAS  Google Scholar 

  • Nuesslein-Hildesheim, B., & Schmidt, I. (1996). Manipulation of potential perinatal zeitgebers for the juvenile circadian temperature rhythm in rats. American Journal of Physiology, 271, R1388–R1395.

    PubMed  CAS  Google Scholar 

  • Nurminen, T. (1989). Shift work, fetal development and course of pregnancy. Scandinavian Journal of Work and Environmental Health, 15, 395–403.

    CAS  Google Scholar 

  • Okamura, H., Fukui, K, Koyama, E., Tsutou, H. L. O., Tsutou, T., Terubayashi, H., Fujisawa, H., & Ibata, Y. (1983). Time of vasopressin neuron origin in the mouse hypothalamus: Examination by combined technique of immunocytochemistry and [3H]thymidine autoradiography. Developmental Brain Research, 9, 223–226.

    Google Scholar 

  • Parmelee, A. H., Wenner, W. H., & Schulz, H. R. (1964). Infant sleep patterns: From birth to 16 weeks of age. Journal of Pediatrics, 65, 576–582.

    PubMed  Google Scholar 

  • Patrick, J., Campbell, K, Carmichael, L., Natale, R., & Richardson, B. (1981). Daily relationships between fetal and maternal heart rates at 38 to 40 weeks of pregnancy. CMA Journal, 124, 1177–1178.

    CAS  Google Scholar 

  • Patrick, J., Campbell, K., Carmichael, L., Natale, R., & Richardson, B. (1982a). Patterns of gross fetal bodymovements over 24-hour observation intervals during the last 10 weeks of pregnancy. American Journal of Obstetrics and Gynecology, 142, 363–371.

    PubMed  CAS  Google Scholar 

  • Patrick, J., Campbell, K., Carmichael, L., & Probert, C. (1982b). Influence of maternal heart rate and gross fetal body movements on the daily pattern of fetal heart rate near term. American Journal of Obstetrics and Gynecology, 144, 533–538.

    PubMed  CAS  Google Scholar 

  • Pickard, G. E. (1980). Morphological characteristics of retinal ganglion cells projecting to the supra-chiasmatic nucleus: A horseradish peroxidase study. Brain Research, 183, 458–465.

    PubMed  CAS  Google Scholar 

  • Pittendrigh, C. S. (1954). On temperature independence in the clock system controlling emergence timein Drosophila. Proceedings of the National Academy of Sciences of the USA, 40, 1018–1029.

    PubMed  CAS  Google Scholar 

  • Pollak, C. P. (1994). Regulation of sleep rate and circadian consolidation of sleep and wakefulness in aninfant. Sleep, 17, 567–575.

    PubMed  CAS  Google Scholar 

  • Provencio, I., Wong, S., Lederman, A. B., Argamaso, S. M., & Foster, R. G. (1994). Visual and circadianresponses to light in aged retinally degenerate mice. Vision Research, 34, 1799–1806.

    PubMed  CAS  Google Scholar 

  • Redman, J., Armstrong, S., & Ng, K. T. (1983). Free-running activity rhythms in the rat: Entrainment by melatonin. Science, 219, 1089–1091.

    PubMed  CAS  Google Scholar 

  • Reh, T. A. (1992). Generation of neuronal diversity in the vertebrate retina. In Determinants of neural identity (pp. 433–467). New York: Academic Press.

    Google Scholar 

  • Reppert, S. M., & Klein, D. C. (1978). Transport of maternal [3H] melatonin to suckling rats and the fate of [3H]melatonin in the neonatal rat. Endocrinology, 102, 582–588.

    PubMed  CAS  Google Scholar 

  • Reppert, S. M., & Schwartz, W. J. (1983). Maternal coordination of the fetal biological clock in utero. Science, 220, 969–971.

    PubMed  CAS  Google Scholar 

  • Reppert, S. M., & Schwartz, W. J. (1984). Functional activity of the suprachiasmatic nuclei in the fetal primate. Neuroscience Letters, 46, 145–149.

    PubMed  CAS  Google Scholar 

  • Reppert, S. M., & Schwartz, W. J. (1986). Maternal suprachiasmatic nuclei are necessary for maternal coordination of the developing circadian system. Journal of Neuroscience, 6, 2724–2729.

    PubMed  CAS  Google Scholar 

  • Reppert, S. M. & Uhl, G. R. (1987). Vasopressin messenger ribonucleic acid in supraoptic and suprachiasmatic nuclei: Appearance and circadian regulation during development. Endocrinology, 120, 2483–2487.

    PubMed  CAS  Google Scholar 

  • Reppert, S. M., Shea, R. A., Anderson, A., & Klein, D. C. (1979). Maternal-fetal transfer of melatonin in a non-human primate. Pediatric Research, 13, 788–791.

    PubMed  CAS  Google Scholar 

  • Reppert, S. M., Coleman, R. J., Heath, H. W., & Swedlow, J. R. (1984). Pineal N-acetyltransferase activity in 10-day-old rats: A paradigm for studying the developing circadian system. Endocrinology, 115, 918–925.

    PubMed  CAS  Google Scholar 

  • Reppert, S. M., Henshaw, D., Schwartz, W. J., & Weaver, D. R. (1987). The circadian-gated timing of birth in rats: Disruption by maternal SCN lesions or by removal of the fetal brain. Brain Research, 403, 398–402.

    PubMed  CAS  Google Scholar 

  • Reppert, S. M., Weaver, D. R., Rivkees, S. A., & Stopa, E. G. (1988). Putative melatonin receptors in a human biological clock. Science, 242, 78–84.

    PubMed  CAS  Google Scholar 

  • Rivkees, S. A., & Reppert, S. M. (1990). Entrainment of circadian phase in developing gray short-tailed opossums: Mother vs. environment. American Journal of Physiology, 259, E384–E388.

    PubMed  CAS  Google Scholar 

  • Rivkees, S. A. & Reppert, S. M. (1991). Appearance of melatonin receptors during embryonic life in Siberian hamsters (Phodopus sungorous). Brain Research, 568, 345–349.

    PubMed  CAS  Google Scholar 

  • Rivkees, S. A., Weaver, D. R., & Reppert, S. M. (1992). Circadian and developmental regulation of Oct-2 gene expression in the suprachiasmatic nuclei. Brain Research, 598, 332–336.

    PubMed  CAS  Google Scholar 

  • Rivkees, S. A., Hofman, P. L., & Fortman, J. (1997). Newborn primate infants are entrained by low intensity lighting. Proceedings of National Academy of Sciences of the USA, 94, 292–297.

    CAS  Google Scholar 

  • Rivkees, S. A., Fox, C. A., Jacobsen, C. D., & Reppert, S. M. (1988). Anatomic and functional development of the suprachiasmatic nuclei in the gray short-tailed opposum. Journal of Neuroscience, 8, 4269–4276.

    PubMed  CAS  Google Scholar 

  • Robinson, M. L. & Fuchs, J. L. (1993). [1251]Vasoactive intestinal peptide binding in rodent supra-chiasmatic nucleus: Developmental and circadian studies. Brain Research, 605, 271–279.

    PubMed  CAS  Google Scholar 

  • Roca, A. L., Godson, C., Weaver, D. R., & Reppert, S. M. (1996). Structure, characterization, and expression of the gene encoding the mouse Mella melatonin receptor. Endocrinology, 137, 3469–3477.

    PubMed  CAS  Google Scholar 

  • Romero, M.-T., & Silver, R. (1990). Time course of peptidergic expression in fetal suprachiasmatic nucleus transplanted into adult hamster. Developmental Brain Research, 57, 1–6.

    PubMed  CAS  Google Scholar 

  • Salzarulo, P., Fagioli, I., & Ricour, C. (1985). Long term continuously fed infants do not develop heart rate circadian rhythm. Early Human Development, 12, 285–289.

    PubMed  CAS  Google Scholar 

  • Sauerbier, I. (1986). Circadian variation in teratogenic response to dexamethasone in mice. Drug and Chemical Toxicology, 9, 25–31.

    PubMed  CAS  Google Scholar 

  • Sauerbier, I. (1987). Circadian modification of ethanol damage in utero to mice. American Journal of Anatomy, 178, 170–174.

    PubMed  CAS  Google Scholar 

  • Scheuch, G. C., & Silver, J. (1982). Ontogeny of the suprachiasmatic nuclei in genetically anopthalmic mice: Anatomical and behavioral studies. In D. C. Klein (Ed.), Melatonin rhythm generating system: Developmental aspects (pp. 20–41). Basel: Karger.

    Google Scholar 

  • Sengelaub, D. R., & Finlay, B. L. (1982). Cell death in the mammalian visual system during normal development: I. Retinal ganglion cells. Journal of Comparative Neurology, 204, 311–317.

    PubMed  CAS  Google Scholar 

  • Serón-Ferré, M., Ducsay, C. A., Sc Valenzuela, G. J. (1993). Circadian rhythms during pregnancy. Endocrine Reviews, 14, 594–609.

    PubMed  Google Scholar 

  • Shaw, D., & Goldman, B. D. (1995). Gender differences in influence of prenatal photoperiods on postnatal pineal melatonin rhythms and serum prolactin and follicle-stimulating hormone in the Siberian hamster (Phodopus sungorus). Endocrinology, 136, 4237–4246.

    PubMed  CAS  Google Scholar 

  • Shibata, S., & Moore, R. Y. (1987). Development of neuronal activity in the rat suprachiasmatic nucleus. Developmental Brain Research, 34, 311–315.

    Google Scholar 

  • Shibata, S., & Moore, R. Y. (1988). Development of a fetal circadian rhythm after disruption of the maternal circadian system. Developmental Brain Research, 41, 313–317.

    Google Scholar 

  • Shimada, M., & Nakamura, T. (1973). Time of neuron origin in mouse hypothalamic nuclei. Experimental Neurology, 41, 163–173.

    PubMed  CAS  Google Scholar 

  • Silver, J. (1977). Abnormal development of the suprachiasmatic nuclei of the hypothalamus in a strain of genetically anophthalmic mice. Journal of Comparative Neurology, 176, 589–606.

    PubMed  CAS  Google Scholar 

  • Silver, R., Lehman, M. N., Gibson, M., Gladstone, W. R., & Bittman, E. L. (1990). Dispersed cell suspensions of fetal SCN restore circadian rhythmicity in SCN-lesioned adult hamsters. Brain Research, 525, 45–58.

    PubMed  CAS  Google Scholar 

  • Silver, R., LeSauter, J., Tresco, P. A., & Lehman, M. N. (1996). A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature, 382, 810–813.

    PubMed  CAS  Google Scholar 

  • Sitka, U., Weinert, D., Berle, K., Rumler, W., & Schuh, J. (1994). Investigations of the rhythmic function of heart rate, blood pressure and temperature in neonates. European Journal of Pediatrics, 153, 117–122.

    PubMed  CAS  Google Scholar 

  • Spangler, G. (1991). The emergence of adrenocortical circadian function in newborns and infants and its relationship to sleep, feeding and material adrenocortical activity. Early Human Development, 25, 197–208.

    PubMed  CAS  Google Scholar 

  • Speh, J. C., & Moore, R. Y. (1993). Retinohypothalamic tract development in the hamster and rat. Developmental Brain Research, 76, 171–181.

    PubMed  CAS  Google Scholar 

  • Stanfield, B., & Cowan, W. M. (1976). Evidence for a change in the retino-hypothalamic projection in the rat following early removal of one eye. Brain Research, 104, 129–136.

    PubMed  CAS  Google Scholar 

  • Stark, R. I., & Daniel, S. S. (1989). Circadian rhythm of vasopressin levels in cerebrospinal fluid of the fetus: Effect of continuous light. Endocrinology, 124, 3095–3101.

    PubMed  CAS  Google Scholar 

  • Stetson, M. H., Elliott, J. A., & Goldman, B. D. (1986). Maternal transfer of photoperiodic information influences the photoperiodic response of prepubertal djungarian hamsters. Biology of Reproduction, 34, 664–669.

    PubMed  CAS  Google Scholar 

  • Swaab, D. F., Zhou, J. N., Ehlhart, T., & Hofman, M. A. (1994). Development of vasoactive intestinal polypeptide neurons in the human suprachiasmatic nucleus in relation to birth and sex. Developmental Brain Research, 79, 249–259.

    PubMed  CAS  Google Scholar 

  • Swanson, L. W. (1987). The hypothalamus. In A. Björkland, T. Hökfelt, & L. W. Swanson (Eds.),Handbook of chemical neuroanatomy, Vol. 5: Integrated systems of the CNS, (Part I, pp. 1–124). Amsterdam: Elsevier.

    Google Scholar 

  • Takahashi, K., & Deguchi, T. (1983). Entrainment of the circadian rhythms of blinded infant rats by nursing mothers. Physiology and Behavior, 31, 373–378.

    PubMed  CAS  Google Scholar 

  • Takahashi, K, Hayafuji, C., & Murakami, N. (1982). Foster mother rat entrains circadian adrenocortical rhythm in blinded pups. American Journal of Physiology, 243, 443–449.

    Google Scholar 

  • Takahashi, K., Ohi, K, Shimoda, K., Tamada, N., & Hayashi, S. (1989). Postnatal maternal entrainment of circadian rhythms. In S. M. Reppert (Ed.), Development of circadian rhythmicity and photoperiodism in mammals (pp. 67–82). Ithaca, NY: Perinatology Press.

    Google Scholar 

  • Tamarkin, L., Westrom, W. K., Hamill, A. I., & Goldman, B. D. (1976). Effect of melatonin on the reproductive systems of male and female Syrian hamsters: A diurnal rhythm in sensitivity to melatonin. Endocrinology, 99, 1534–1541.

    PubMed  CAS  Google Scholar 

  • Tenreiro, S., Dowse, H. B., D’Souza, S., Minors, D., Chiswick, M., Simms, D., & Waterhouse, J. (1991). The development of ultradian and circadain rhythms in premature babies maintained in constant conditions. Early Human Development, 27, 33–52.

    PubMed  CAS  Google Scholar 

  • Terman, J. S., Remé, C. E., & Terman, M. (1993). Rod outer segment disk shedding in rats with lesions of the suprachiasmatic nucleus. Brain Research, 605, 256–264.

    PubMed  CAS  Google Scholar 

  • Tominaga, K, Inouye, S.-I. T., & Okamura, H. (1994). Organotypic slice culture of the rat suprachiasmatic nucleus: Sustenance of cellular architecture and circadian rhythm. Neuroscience, 59, 1025–1042.

    PubMed  CAS  Google Scholar 

  • Tosini, G. & Menaker, M. (1996). Circadian rhythms in cultured mammalian retina. Science, 272, 419–421.

    PubMed  CAS  Google Scholar 

  • Treep, J. A., Abe, H., Rusak, B., & Goguen, D. M. (1995). Two distinct retinal projections to the hamster suprachiasmatic nucleus. Journal of Biological Rhythms, 10, 299–307.

    PubMed  CAS  Google Scholar 

  • Ugrumov, M. V., Popov, A. P., Vladimirov, S. V., Kasmambetova, S., Novodjilova, A. P., & Tramu, G. (1994a). Development of the suprachiasmatic nucleus in rats during ontogenesis: Serotoninimmunopositive fibers. Neuroscience, 58, 161–165.

    PubMed  CAS  Google Scholar 

  • Ugrumov, M. V., Popov, A. P., Vladimirov, S. V., Kasmambetova, S., & Thibault, J. (1994b). Development of the suprachiasmatic nucleus in rats during ontogenesis: Tyrosine hydroxylase immunopositive cell bodies and fibers. Neuroscience, 58, 151–160.

    PubMed  CAS  Google Scholar 

  • Ugrumov, M. V., Trembleau, A., & Calas, A. (1994c). Altered vasoactive intestinal polypeptide gene expression in the fetal rat suprachiasmatic nucleus following prenatal serotonin deficiency. International Journal of Developmental Neuroscience, 12, 143–149.

    PubMed  CAS  Google Scholar 

  • Updike, P. A., Accurso, F. J., & Jones, R. H. (1985). Physiologic ciradian rhythmicity in preterm infants. Nursing Research, 34, 160–163.

    PubMed  CAS  Google Scholar 

  • Van den Pol, A. N. & Tsujimoto, K. L. (1985). Neurotransmitters of the hypothalamic suprachiasmatic nucleus: immunocytochemical analysis of 25 neuronal antigens. Neuroscience, 15, 1049–1086.

    PubMed  Google Scholar 

  • Visser, G. H. A., Goodman, J. D. S., Levine, D. H., & Dawes, G. S. (1982). Diurnal and other cyclic varia-tions in human fetal heart rate near term. American Journal of Obstetrics and Gynecology, 142, 535–544.

    PubMed  CAS  Google Scholar 

  • Viswanathan, N. (1989). Presence—absence cycles of the mother and not light—darkness are the zeitgeber for the circadian rhythm of newborn mice. Experientia, 45, 383–385.

    Google Scholar 

  • Viswanathan, N. (1990). Role of relative durations of presence/absence of mother mouse (Mus booduga) in circadian rhythm of pups. Current Science, 59, 409–411.

    Google Scholar 

  • Viswanathan, N., & Chandrashekaran, M. K. (1985). Cycles of presence and absence of mother mouse entrain the circadian clock of pups. Nature, 317, 530–531.

    PubMed  CAS  Google Scholar 

  • Viswanathan, N., & Davis, F. C. (1993). The fetal circadian pacemaker is not involved in the timing of birth in hamsters. Biology of Reproduction, 48, 530–537.

    PubMed  CAS  Google Scholar 

  • Viswanathan, N., & Davis, F. C. (1995). Suprachiasmatic nucleus grafts restore circadian function in aged hamsters. Brain Research, 686, 10–16.

    PubMed  CAS  Google Scholar 

  • Viswanathan, N., & Davis, F. C. (1997). Single prenatal injections of melatonin or the Dl-dopamine receptor agonist SKF 38393 to pregnant hamsters sets the offsprings’ circadian rhythms to phases 180§ apart. Journal of Comparative Physiology A, 180, 339–346.

    CAS  Google Scholar 

  • Viswanathan, N., Weaver, D. R., Reppert, S. M., & Davis, F. C. (1994). Entrainment of the fetal hamster circadian pacemaker by prenatal injections of the dopamine agonist, SKF 38393. Journal of Neuroscience, 14, 5393–5398.

    PubMed  CAS  Google Scholar 

  • Vitaterna, M. H., King, D. P., Chang, A.M., Kornhauser, J. M., Lowrey, P. L., McDonald, J. D., Dove, W. F., Pinto, L. H., Turek, E W., & Takahashi, J. S. (1994). Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior. Science, 264, 719–725.

    PubMed  CAS  Google Scholar 

  • Weaver, D. R., & Reppert, S. M. (1995). Definition of the developmental transition from dopaminergic to photic regulation of c-fos gene expression in the rat suprachiasmatic nucleus. Molecular Brain Research, 33, 136–148.

    PubMed  CAS  Google Scholar 

  • Weaver, D. R., & Reppert, S. M. (1986). Maternal melatonin communicates daylength to the fetus in djungarian hamsters. Endocrinology, 119, 2861–2863.

    PubMed  CAS  Google Scholar 

  • Weaver, D. R., & Reppert, S. M. (1987). Maternal—fetal communication of circadian phase in a precocious rodent, the spiny mouse. American Journal of Physiology, 253, E401—E409.

    PubMed  Google Scholar 

  • Weaver, D. R. & Reppert, S. M. (1989a). Periodic feeding of SCN-lesioned pregnant rats entrains the fetal biological clock. Developmental Brain Research, 46, 291–296.

    PubMed  CAS  Google Scholar 

  • Weaver, D. R. & Reppert, S. M. (1989b). Direct in utero perception of light by the mammalian fetus. Developmental Brain Research, 47, 151–155.

    PubMed  CAS  Google Scholar 

  • Weaver, D. R., Keohan, J. T., & Reppert, S. M. (1987). Definition of a prenatal sensitive period for maternal—fetal communication of day length. American Journal of Physiology, 253, E701—E704.

    PubMed  Google Scholar 

  • Weaver, D. R., Rivkees, S. A., & Reppert, S. M. (1989). Localization and characterization of melatonin receptors in rodent brain by in vitro autoradiography. Journal of Neuroscience, 9, 2581–2590.

    PubMed  CAS  Google Scholar 

  • Weaver, D. R., Rivkees, S. A., & Reppert, S. M. (1992). Dl-dopamine receptors activate c-fos expression in the fetal suprachiasmatic nuclei. Proceedings of National Academy of Sciences of the USA, 89, 9201–9204.

    CAS  Google Scholar 

  • Weaver, D. R., Roca, A. L., & Reppert, S. M. (1995). c-fos and jun-B mRNAs are transiently expressed infetal rodent suprachiasmatic nucleus following dopaminergic stimulation. Developmental Brain Re-search, 85, 293–297.

    CAS  Google Scholar 

  • Weinert, D., Sitka, U., Minors, D. S., & Waterhouse, J. M. (1994). The development of circadian rhythmicity in neonates. Early Human Development, 36, 117–126.

    PubMed  CAS  Google Scholar 

  • Welsh, D. K., Logothetis, D. E., Meister, M., & Reppert, S. M. (1995). Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron, 14, 697–706.

    PubMed  CAS  Google Scholar 

  • Weyer, R. A. (1984). Sex differences in human circadian rhythms: Intrinsic periods and sleep fractions. Experientia, 40, 1226–1234.

    Google Scholar 

  • Whitnall, M. H., Key, S., Ben-Barak, Y., Ozato, K., & Gainer, H. (1985). Neurophysin in the hypothalamoneurohypophysial system. Journal of Neuroscience, 5, 98–109.

    PubMed  CAS  Google Scholar 

  • Wiegand, S. J., & Gash, D. M. (1988). Organization and efferent connections of transplanted suprachiasmatic nuclei. Journal of Comparative Neurology, 267, 562–579.

    PubMed  CAS  Google Scholar 

  • Williams, L. M., Martinoli, M. G., Titchener, L. T., & Pelletier, G. (1991). The ontogeny of central melatonin binding sites in the rat. Endocrinology, 128, 2083–2090.

    PubMed  CAS  Google Scholar 

  • Wray, S., Castel, M., & Gainer, H. (1993). Characterization of the suprachiasmatic nucleus in organotypic slice explant cultures. Microscopy Research and Technique, 25, 46–60.

    PubMed  CAS  Google Scholar 

  • Yellon, S. M., & Longo, L. D. (1988). Effect of maternal pinealectomy and reverse photoperiod on the circadian melatonin rhythm in the sheep and fetus during the last trimester of pregnancy. Biology of Reproduction, 39, 1093–1099.

    PubMed  CAS  Google Scholar 

  • Zucker, I., Fitzgerald, K. M., & Morin, L. P. (1980). Sex differentiation of the circadian system in the golden hamster. American Journal of Physiology, 238, R97—R101.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davis, F.C., Reppert, S.M. (2001). Development of Mammalian Circadian Rhythms. In: Takahashi, J.S., Turek, F.W., Moore, R.Y. (eds) Circadian Clocks. Handbook of Behavioral Neurobiology, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1201-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1201-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5438-3

  • Online ISBN: 978-1-4615-1201-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics