Skip to main content

Abstract

Apart from the breaking and transferring devices, all other power quality (PQ) enhancement devices like DSTATCOM, DVR, UPQC etc. are based on power converters. Furthermore modern FACTS devices like STATCOM, SSSC, UPFC etc. also employ power converters. However, FACTS devices have much higher power rating than PQ enhancement devices since they are used in bulk power transmission systems. Moreover, their operation philosophy is also different as they are assumed to work under balanced sinusoidal conditions. As a consequence, the control strategies of FACTS devices are different from the PQ enhancement or Custom Power devices. Since power converters have an important role to play in modern power systems, we discuss their topologies and control strategies in this chapter. For the background materials in the area of Power Electronics, there are numerous excellent textbooks, e.g., [13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, John Wiley, New York, 1989.

    Google Scholar 

  2. M. H. Rashid, Power Electronics: Circuits, Devices and Applications, Prentice-Hall, Englewood Cliffs, 1993.

    Google Scholar 

  3. G. K. Dubey, S. R. Doradla, A. Joshi and R. M. K. Sinha, Thyristorised Power Controllers, Wiley Eastern, New Delhi, 1986.

    Google Scholar 

  4. D. M. Divan, “The resonant dc link inverter — a new concept in static power conversion,” IEEE Trans. Industry Applications, Vol. IA-25, No. 2, pp. 317–325, 1989.

    Article  Google Scholar 

  5. K. K. Mahapatra, A. Ghosh, A. Joshi and S. R. Doradla, “A novel current initialization scheme for parallel resonant dc link inverter,” International Journal of Electronics, Vol. 87, No. 9, pp. 1125–1137, 2000.

    Article  Google Scholar 

  6. B. D. Bedford and R. G. Hoft, Principles of Inverter Circuits, John Wiley, New York, 1964.

    Google Scholar 

  7. L. Gyugyi, N. G. Hingorani, P. R. Nannery and N. Tai, “Advanced static var compensator using gate turn-off thyristors for utility applications,” CIGRE, Paper No. 23–203, 1990.

    Google Scholar 

  8. L. Sunil Kumar, Design, Modeling and Control of a 48-step inverter base S3C, M. Tech. Thesis, IIT Kanpur, 1998.

    Google Scholar 

  9. L. Sunil Kumar and A. Ghosh, “Modeling and control design of a static synchronous series compensator,” IEEE Trans, on Power Delivery, vol. 14, no. 4, pp. 1448–1453, 1999.

    Article  Google Scholar 

  10. L. Sunil Kumar and A. Ghosh, “Static synchronous series compensator — design, control and applications,” Electric Power Systems Research, vol. 49, pp. 139–148, 1999.

    Article  Google Scholar 

  11. G. N. Pillai, A. Ghosh and A. Joshi, “Torsional Oscillation Studies in an SSSC Compensated Power System,” Electric Power Systems Research, Vol. 55, pp. 57–64, 2000.

    Article  Google Scholar 

  12. A. Nabae, I. Takahashi and H. Akagi, “A new neutral-point-clamped PWM inverter,” IEEE Trans. Industry Applications, Vol. IA-17, No. 5, pp. 518–523, 1981.

    Article  Google Scholar 

  13. P. M. Bhagwat and V. R. Stefanovic, “Generalized structure of a multilevel PWM inverter,” IEEE Trans. Industry Applications, Vol. IA-19, No. 6, pp. 1057–1069, 1983.

    Article  Google Scholar 

  14. N. S. Choi, J. G. Cho and G. H. Cho, “A general circuit topology of multilevel inverter,” Proc. IEEE Power Electronics Specialist Conference (PESC), pp. 96–103, 1991.

    Google Scholar 

  15. M. Marchesoni, “High-performance current control techniques for applications to multilevel high-power voltage source inverters,” IEEE Trans. Power Electronics, Vol. 7, No. 1, pp. 189–204, 1992.

    Article  Google Scholar 

  16. G. Carrara, S. Gardella, M. Marchesoni, R. Salutari and G. Sciutto, “A new multilevel PWM method: A theoretical analysis,” IEEE Trans. Power Electronics, Vol. 7, No. 3, pp. 497–505, 1992.

    Article  Google Scholar 

  17. J. S. Lai and F. Z. Peng, “Multilevel converters — a new breed of power converters,” IEEE Trans. Industry Applications, Vol. 32, No. 3, pp. 509–517, 1996.

    Article  Google Scholar 

  18. R. W. Menzies and Y. Zhuang, “Advanced static compensation using a multilevel GTO thyristor inverter,” IEEE Trans. Power Delivery, Vol. 10, No. 2, pp. 732–738, 1995.

    Article  Google Scholar 

  19. H. S. Patel and R. G. Hoft, “Generalized techniques of harmonic elimination and voltage control in thyristor inverters: Part I — Harmonic Elimination,” IEEE Trans. Industry Applications, Vol. IA-9, No. 3, pp. 310–317, 1973.

    Article  Google Scholar 

  20. J. B. Ekanayake, N. Jenkins and C. B. Cooper, “Experimental investigation of an advanced static var compensator,” Proc. IEE — Generation, Transmission & Distribution, Vol. 142, No. 2, pp. 202–210, 1995.

    Article  Google Scholar 

  21. Y. Chen, B. Mwinyiwiwa, Z. Wolanski and B. T. Ooi, “Regulating and equalizing dc capacitance voltages in multilevel STATCOM,” IEEE Trans. Power Delivery, Vol. 12, No. 2, pp. 901–907, 1997.

    Article  Google Scholar 

  22. M. D. Manjrekar, P. K. Steiner and T. A. Lipo, “Hybrid multilevel power conversion system: A competitive solution for high-power applications,” IEEE Trans. Industry Applications, Vol. 36, No. 3, pp. 834–841, 2000.

    Article  Google Scholar 

  23. X. Yuan and I. Barbi, “Fundamentals of a new diode clamping multilevel inverter,” IEEE Trans. Power Electronics, Vol. 15, No. 4, pp. 711–718, 2000.

    Article  Google Scholar 

  24. M. K. Mishra, A. Ghosh and A. Joshi, “A new STATCOM topology to compensate loads containing ac and dc components,” IEEE Power Engineering Society Winter Meeting, Singapore, 2000.

    Google Scholar 

  25. T. H. Barton, “Pulse width modulation waveforms — the Bessel Approximation,” Proc. IEEE Industry Applications Society Annual Conference, pp. 1125–1130, 1978.

    Google Scholar 

  26. H. W. Van der Broeck, H. C. Skudelny and G. V. Stanke, “Analysis and realization of a pulsewidth modulator based on space vector,” IEEE Trans. Industry Applications, Vol. 24, No. 1, pp. 142–150, 1988.

    Article  Google Scholar 

  27. K. Taniguchi and H. Irie, “Trapezoidal modulating signal for three-phase PWM inverter,” IEEE Trans. Industrial Electronics, Vol. IE-3, No. 2, pp. 193–200, 1986.

    Article  Google Scholar 

  28. K. Thorborg and A. Nystrom, “Staircase PWM: an uncomplicated and efficient modulation technique for ac motor drives,” IEEE Trans. Power Electronics, Vol. 3, No. 4, pp. 391–398, 1988.

    Article  Google Scholar 

  29. J. C. Salmon, S. Olsen and N. Durdle, “A three-phase PWM strategy using a stepped reference waveform,” IEEE Trans. Industry Applications, Vol. 27, No. 5, pp. 914–920, 1991.

    Article  Google Scholar 

  30. J. T. Boys, “Theoretical spectra for narrow-band random PWM waveforms,” Proc. IEE, Pt. B, Vol. 140, No. 6, pp. 393–400, 1993.

    Google Scholar 

  31. R. L. Kirlin, S. Kwok, S. Legowski and A. M. Trzynadlowski, “Power spectra of a PWM inverter with randomized pulse position,” IEEE Trans. Power Electronics, Vol. 9, No. 5, pp. 463–472, 1994.

    Article  Google Scholar 

  32. S. Barnett, Introduction to Mathematical Control Theory, Clarendon Press, Oxford, 1975.

    MATH  Google Scholar 

  33. J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice-hall, Englewood Cliffs, 1991.

    MATH  Google Scholar 

  34. R. A. DeCarlo, S. H. Zak and G. P. Mathews, “Variable structure control of nonlinear multivariable systems: A tutorial,” Proc. IEEE, Vol. 76, No. 3, pp. 212–232, 1988.

    Article  Google Scholar 

  35. J. Y. Huang, W. Gao and J. C. Hung, “Variable structure control: A survey,” IEEE Trans. Industrial Electronics, Vol. 40, No. 1, pp. 2–22, 1993.

    Article  Google Scholar 

  36. B. D. O. Anderson and J. B. Moore, Linear Optimal Control, Prentice-Hall, Englewood Cliffs, 1971.

    MATH  Google Scholar 

  37. A. Kawamura, T. Haneyoshi and R. G. Hoft, “Deadbeat controlled PWM inverter with parameter estimation using only voltage sensor,” IEEE Trans. Power Electronics, Vol. 3, No. 2, pp. 118–125, 1988.

    Article  Google Scholar 

  38. K. J. Astrom and B. Wittenmark, Computer Controlled Systems, Prentice-Hall, Englewood Cliffs, 1990.

    Google Scholar 

  39. A. Ghosh, G. Ledwich, O. P. Malik and G. S. Hope, “Power system stabilizers based on adaptive control techniques,” IEEE Trans. Power App. & Systems, Vol. PAS-103, pp. 1983–1989, 1984.

    Article  Google Scholar 

  40. A. Ghosh, G. Ledwich, G. S. Hope and O. P. Malik, “Power systems stabilizers for large disturbances,” Proceedings of IEE, Vol. 132, Pt. C, No. 1, pp. 14-25, 1985.

    Google Scholar 

  41. G. Ledwich, “Linear switching controller convergence,” Proc. IEE — Control Theory & Applications, Vol. 142, No. 4, 1995.

    Google Scholar 

  42. T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, 1980.

    MATH  Google Scholar 

  43. B. C. Kuo, Digital Control Systems, Holt, Rinehart & Winston, New York, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ghosh, A., Ledwich, G. (2002). Structure and Control of Power Converters. In: Power Quality Enhancement Using Custom Power Devices. The Springer International Series in Engineering and Computer Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1153-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1153-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5418-5

  • Online ISBN: 978-1-4615-1153-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics