Skip to main content

Granular Prototyping in Fuzzy Clustering

  • Chapter
Granular Computing

Abstract

In the previous two chapters we discussed granulation algorithms that are based on direct manipulation of information granules. Here, we introduce an algorithm for deriving information granules as prototypes in the clustering process. The way of revealing a structure in data is realized by maximizing a certain performance index (objective function) that takes into consideration an overall level of matching (to be maximized) and a similarity level between the prototypes (the component to be minimized). It is shown how the relevance of the prototypes translates into their granularity. The clustering method helps identify and quantify anisotropy of the feature space. We also show how each prototype is equipped with its own weight vector describing the anisotropy property and thus implying some ranking of the features in the data space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderberg, M.R. (1973), Cluster Analysis for Applications, Academic Press, N. York.

    MATH  Google Scholar 

  • Bargiela, A. (2001), Interval and ellipsoidal uncertainty models, In: W. Pedrycz (ed.) Granular Computing, Physica Verlag, Heidelberg, 23–57.

    Google Scholar 

  • Bargiela, A., Pedrycz, W., Hirota, K. (2002), Data granulation through optimization of similarity measure, Archives of Control Sciences, to appear.

    Google Scholar 

  • Bargiela, A., Pedrycz, W. (2002), A model of granular data: A design problem with the Tschebyshev FCM, International Journal of Soft Computing, to appear.

    Google Scholar 

  • Bezdek, J.C. (1981), Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, N. York.

    Book  MATH  Google Scholar 

  • Bouchon-Meunier, B., Rifqi, M., Bothorel, S. (1996), Towards general measures of comparison of objects, Fuzzy Sets and Systems, 84, 2, 143–153.

    Article  MathSciNet  MATH  Google Scholar 

  • Di Nola, A., Sessa, S., Pedrycz, W., Sanchez, E. (1989), Fuzzy Relational Equations and Their Applications in Knowledge Engineering, Kluwer Academic Press, Dordrecht.

    Google Scholar 

  • Delgado, M, Gomez-Skarmeta, F., Martin, F. (1997), A fuzzy clustering-based prototyping for fuzzy rule-based modeling, IEEE Transactions on Fuzzy Systems, 5(2), 223–233.

    Article  Google Scholar 

  • Duda, R.O., Hart, P.E., Stork, D.G. (2001), Pattern Classification, 2nd edition, J. Wiley, NY.

    MATH  Google Scholar 

  • Gabrys, B., Bargiela, A. (2000), General fuzzy Min-Max neural network for clustering and classification, IEEE Trans. on Neural Networks, Vol. 11, No. 3, pp. 769–783.

    Article  Google Scholar 

  • Hoppner F. et al (1999), Fuzzy Cluster Analysis, J. Wiley, Chichester.

    Google Scholar 

  • Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H. (1995), Selecting fuzzy if-then rules for classification problems using genetic algorithms”, IEEE Trans, on Fuzzy Systems, (3)3, 260–270.

    Article  Google Scholar 

  • Kandel, A. (1986), Fuzzy Mathematical Techniques with Applications, Addison-Wesley, MA.

    MATH  Google Scholar 

  • Pedrycz, W. (1991), Neurocomputations in relational systems, IEEE Trans. on Pattern Analysis and Machine Intelligence, 13, 289–296.

    Article  Google Scholar 

  • Pedrycz, W., Rocha, A. (1993), Knowledge-based neural networks, IEEE Trans. on Fuzzy Systems, 1, 254–266.

    Article  Google Scholar 

  • Pedrycz, W. (1997), Computational Intelligence: An Introduction, CRC Press, Boca Raton, Fl.

    MATH  Google Scholar 

  • Pedrycz, W. (1998), Conditional fuzzy clustering in the design of radial basis function neural networks, IEEE Transactions on Neural Networks, 9 no. 4, 601–612.

    Article  Google Scholar 

  • Pedrycz, W., Vasilakos, A.V. (1999), Linguistic models and linguistic modeling, IEEE Trans. on Systems Man and Cybernetics, vol. 29, no. 6, 745–757.

    Article  Google Scholar 

  • Pedrycz, W., Bargiela, A. (2001), Information granulation: A search for data structures, Knowledge-based Engineering Systems KES 2001, Osaka, October 2001, 1147–1151.

    Google Scholar 

  • Pedrycz, W., Bargiela, A. (2002), Granular Clustering: A granular signature of data, IEEE Trans. on Systems Man and Cybernetics, Vol 32, No. 2, 212–224.

    Article  Google Scholar 

  • Simpson, P.K. (1992), Fuzzy Min-Max neural networks — Part1: Classification, IEEE Trans. on Neural Networks, Vol 3, No. 5, pp. 776–86.

    Article  Google Scholar 

  • Simpson, P.K. (1993), Fuzzy Min-Max neural networks — Part2: Clustering, IEEE Trans. on Neural Networks, Vol 4, No. 1, pp. 32–45.

    Google Scholar 

  • Sudkamp, T. (1993), Similarity, interpolation, and fuzzy rule construction, Fuzzy Sets and Systems, vol. 58, no. 1, 73–86.

    Article  MathSciNet  Google Scholar 

  • Zadeh, L.A. (1979), Fuzzy sets and information granularity, In: M.M. Gupta, R.K. Ragade, R.R. Yager, eds., Advances in Fuzzy Set Theory and Applications, North Holland, Amsterdam, 3–18.

    Google Scholar 

  • Zadeh, L.A. (1996), Fuzzy logic = Computing with words, IEEE Trans. on Fuzzy Systems, vol. 4, 2, 103–111.

    Article  MathSciNet  Google Scholar 

  • Zadeh, L.A. (1997), Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic, Fuzzy Sets and Systems, 90, 1997, pp. 111–117.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bargiela, A., Pedrycz, W. (2003). Granular Prototyping in Fuzzy Clustering. In: Granular Computing. The Springer International Series in Engineering and Computer Science, vol 717. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1033-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1033-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5361-4

  • Online ISBN: 978-1-4615-1033-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics