Skip to main content

Abstract

Natural and synthetic polymers are indispensable in today’s world. Recently, however, it has been found that most synthetic polymers developed from petroleum and coal are not compatible with the environment, since they cannot be included in the natural recycling system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. V. P. Saraf and W. G. Glasser, Engineering plastics from lignin. III. structure property relationship in solution cast polyurethane films, J. Appl. Polym. Sci. 29, 1831–1841 (1984).

    Article  CAS  Google Scholar 

  2. V. P. Saraf W. G. Glasser, Engineering plastics from lignin. VI. structure property relationship of PEG-containing polyurethane networks, J. Appl. Polym. Sci. 30, 2207–2224 (1985).

    Article  CAS  Google Scholar 

  3. H. Hatakeyama, S. Hirose, K. Nakamura, and T. Hatakeyama, in: Cellulosics: Chemical, Biochemical and Material Aspects, edited by J. F. Kennedy, G. O. Phillips and P. A. Williams (Ellis Horwood, Chichester, 1993), pp. 524–536.

    Google Scholar 

  4. N. Morohoshi, S. Hirose, H. Hatakeyama, T. Tokashiki, and K. Teruya, Biodegradability of polyurethane foams derived from molasses, Sen-i Gakkaishi 51, 143–149 (1995).

    Article  CAS  Google Scholar 

  5. H. Hatakeyama, S. Hirose, T. Hatakeyama, K. Nakamura, K. Kobashigawa, and N. Morohoshi, Biodegradable polyurethanes from plant components, J. Macromol. Sci. Pure Appl. Chem. A32, 743–750 (1995).

    Article  CAS  Google Scholar 

  6. M. J. Donnely, Polyurethanes from renewable resources. IV-properties of linear, crosslinked and segmented polymers from polytetrahydrofuran diols and their glucosides, Polym. Int. 37, 297–314 (1995).

    Article  Google Scholar 

  7. K. Nakamura, Y. Nishimura, P. Zetterlund, T. Hatakeyama, and H. Hatakeyama, TG-FTIR studies on biodegradable polyurethanes containing mono-and disaccharide components, Thermochmica Acta 282/283, 433–441 (1996).

    Article  Google Scholar 

  8. P. Zetterlund, S. Hirose, T. Hatakeyama, H. Hatakeyama, and A.-C. Albertsson, Thermal and mechanical properties of polyurethanes derived from mono-and disaccharides, Polym. Int. 42, 1–8 (1997).

    Article  CAS  Google Scholar 

  9. H. Hatakeyama, K. Kobashigawa, S. Hirose, and T. Hatakeyama, Synthesis and physical properties of polyurethanes from saccharide-based polycaprolactones, Macromol. Symp. 130, 127–138 (1998).

    Article  CAS  Google Scholar 

  10. T. Hatakeyama, T. Tokashiki, and H. Hatakeyama, Thermal properties of polyurethanes derived from molasses before and after biodegradation, MacromoL Symp. 130, 139–150 (1998).

    Article  CAS  Google Scholar 

  11. T. Hatakeyama and F. X. Quinn, in: Thermal Analysis (John Wiley & Sons, Chichester, 1994).

    Google Scholar 

  12. K. Nakamura, T. Hatakeyama, and H. Hatakeyama, Thermal properties of solvolysis lignin-derived polyurethanes, Polym. Adv. Technol 3, 151–155 (1992).

    Article  CAS  Google Scholar 

  13. H. Hatakeyama, K. Nakamura, and T. Hatakeyama, Studies on factors affecting the molecular motion of lignin and lignin-related polystyrene derivatives, Pulp Paper Mag. Can. 6, TR 105–110 (1980).

    CAS  Google Scholar 

  14. T. Hatakeyama, K. Nakamura, and H. Hatakeyama, Studies on heat capacity of cellulose and lignin, Polymer 23, 1801–1804 (1982).

    Article  CAS  Google Scholar 

  15. J. Nakano, Y. Izuta, T. Orita, H. Hatakeyama, K. kobashigawa, K. Teruya, and S. Hirose, Thermal and mechanical properties of polyurethanes derived from Fractionated Kraft lignin, Sen-i Gakkaishi 50, 416–422 (1997).

    Article  Google Scholar 

  16. T. Hatakeyama and H. Hatakeyama, Effect of chemical structure of amorphous polymers on heat capacity difference at glass transition temperature, Thermochim. Acta 267, 249 (1995).

    Article  CAS  Google Scholar 

  17. S. Hirose, K. Kobashigawa, Y. Izuta, and H. Hatakeyama, Thermal degradation of polyurethanes containing lignin studied by TG-FTIR, Polym. Int. 47, 247–256 (1998).

    Article  CAS  Google Scholar 

  18. J. H. Saunders and K.C. Fisch, in: Polyurethanes, Chemistry and Technology in High Polymers, Vol. XV (Interscience Publishers, New York, 1962), pp.103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hatakeyama, H. (2002). Polyurethanes Containing Lignin. In: Hu, T.Q. (eds) Chemical Modification, Properties, and Usage of Lignin. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0643-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0643-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5173-3

  • Online ISBN: 978-1-4615-0643-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics