Skip to main content

Dynamic Profiling and Canonical Modeling

Powerful Partners in Metabolic Pathway Identification

  • Chapter
Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis

Abstract

Biological research attempts to answer the question: How do organisms function? Once we can answer this question, we can explain our natural surroundings and begin to change them in a targeted fashion that offers us benefit, may it be in medicine, agriculture, biotechnology, or a responsible exploitation of the environment. The challenge is that we were not provided with a blueprint of the inner workings of organisms. We have very many observational data, but they are almost always mere snapshots of some parts of some organisms under some more or less controlled conditions. Often these snapshots are clustered in some interesting corner of the biological universe, but more often they are separated by gaping holes in our knowledge. Our task is then to interpolate between rather scarce data in order to construct a picture that matches the observations and, more interestingly, explains what lies between and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abu-Mostafa YS. The Vapnik-Chervonenkis dimension: information versus complexity in learning. Neural Computat 1: 312–317 (1989).

    Article  Google Scholar 

  • Akutsu T, Miyano S, Kuhara S. Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics 16: 727–734 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Almeida JS. Predictive non-linear modeling of complex data by artificial neural networks. Curr Opin Biotechnol in pressspi (2002).

    Google Scholar 

  • Almeida JS, Reis MAM, Carrondo MJT. Competition between nitrate and nitrite reduction in denitrification by Pseudomonas fluorescens. Biotechnol Bioeng 46: 476–484 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Alves R, Savageau M. Extending the method of mathematically controlled comparison to include numerical comparisons. Bioinformatics 16: 786–798 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Burden RL, Faires JD. Numerical Analysis. 5th Edn. pp. 156–167, PWS Publishing Co, Boston (1993).

    Google Scholar 

  • DiStefano III J J. The modeling methodology forum: an expanded department. Am J Physiol 248: C187–C188 (1985).

    PubMed  Google Scholar 

  • Garfinkel D. The role of computer simulation in biochemistry. Comp Biomed Res 2: 31–44 (1968).

    Article  CAS  Google Scholar 

  • Garfinkel D. Computer modeling, complex biological systems, and their simplifications. Am J Phys 239: R1–R6 (1980).

    Google Scholar 

  • Garfinkel D. Computer-based modeling of biological systems which are inherently complex: problems, strategies, and methods. Biomed Biochim Acta 44: 823–829 (1985).

    PubMed  CAS  Google Scholar 

  • Goodenowe DB. Metabolic network analysis: integrating comprehensive genomic and metabolomic data to understand development and disease (abstract). Cambridge Healthtech Institute Conference on Metabolic Profiling: Pathways in Discovery, Chapel Hill (2001).

    Google Scholar 

  • Hatzimanikatis V, Floudas CA, Bailey JE. Optimization of regulatory architectures in metabolic reaction networks. Biotechnol Bioeng 52: 485–500 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Heinrich R, Rapoport SM, Rapoport TA. Metabolic regulation and mathematical models. Prog Biophys Mol Bio 32: 1–82 (1977).

    Article  CAS  Google Scholar 

  • Hernández-Bermejo B, Fairén V. Lotka-Volterra representation of general nonlinear systems. Math Biosci 140: 1–32 (1997).

    Article  PubMed  Google Scholar 

  • Irvine DH, Savageau MA. Network regulation of the immune response. J Immunol 134: 2100–2130(1985).

    PubMed  CAS  Google Scholar 

  • Irvine DH, Savageau MA. Efficient solution of nonlinear ordinary differential equations expressed in S-system canonical form. SI AM J N timer Anal 27: 704–735 (1990).

    Article  Google Scholar 

  • Jacquez, J A. Compartmental Analysis in Biology and Medicine. 3rd Edn. Thomson-Shore, Inc, Dexter, MI (1996).

    Google Scholar 

  • Kantz H, Schreiber T. Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (1997).

    Google Scholar 

  • Kikuchi S, Tominaga D, Masanori A, Tomita M. Pathway finding from given time-courses using genetic algorithm. Genome Informat 12: 304–305 (2001).

    CAS  Google Scholar 

  • Maki Y, Tominaga D, Okamoto M et al. Development of a system for the inference of large scale genetic networks. ProcPacific Symposium on Biocomputing. pp. 446–458, World Scientific, Singapore (2001).

    Google Scholar 

  • Michel, M. An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998).

    Google Scholar 

  • Neves AR, Ramos A, Nunes MC et al. In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. Biotechnol Bioeng 64: 200–212 (1999).

    Article  CAS  Google Scholar 

  • Neves AR, Ramos A, Shearman C et al. In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. Eur J Biochem 267: 3859–3868 (2000).

    Article  CAS  Google Scholar 

  • Okamoto M, Morita Y, Tominaga D et al. Design of virtual-labo-system for metabolic engineering: development of biochemical engineering system analyzing tool-kit (BEST KIT). Comp Chem Engng 21: S745–S750 (1997).

    CAS  Google Scholar 

  • Oliveira JS, Bailey CG, Jones-Oliveira JB, Dixon DA. An algebraic-combinatorial model for the identification and mapping of biochemical pathways. Bull Mathem Biol 63: 1163–1196 (2001).

    Article  CAS  Google Scholar 

  • Sakamoto E, Iba H. Inferring a system of differential equations for a gene regulatory network by using genetic programming. Proc 2001 Congress on Evolutionary Computing, CEC200L pp. 720–726, IEEE Press, Piscataway, NJ, (2001).

    Google Scholar 

  • Samoilov M, Arkin A, Ross J. On the deduction of chemical reaction pathways from measurements of time series of concentrations. Chaos 11: 108–114 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Sands PJ, Voit EO. Flux-based estimation of parameters in S-systems. Ecol Model 93: 75–88 (1996).

    Article  Google Scholar 

  • Santos MM, Lemos PC, Reis MA, Santos H. Glucose metabolism and kinetics of phosphorus removal by the fermentative bacterium Microlunatus phosphovorus. Appl Environ Microbiol 65: 3920–3928 (1999).

    CAS  Google Scholar 

  • Savageau MA. Biochemical Systems Analysis, I. Some mathematical properties of the rate law for the component enzymatic reactions. J Theor Biol 25: 365–369 (1969a).

    Article  PubMed  CAS  Google Scholar 

  • Savageau MA. Biochemical Systems Analysis, II. The steady-state solutions for an n-pool system using a power-law approximation. J Theor Biol 25: 370–379 (1969b).

    Article  PubMed  CAS  Google Scholar 

  • Savageau MA. Biochemical Systems Analysis. A Study of Function and Design in Molecular Biology. Addison-Wesley, Reading (1976).

    Google Scholar 

  • Savageau MA. Growth equations: a general equation and a survey of special cases. Math Biosci 48: 267–278 (1980).

    Article  Google Scholar 

  • Savageau MA. A theory of alternative designs for biochemical control systems. Biomed Biochim Acta 44: 875–880 (1985).

    PubMed  CAS  Google Scholar 

  • Savageau MA, Voit EO. Recasting nonlinear differential equations as S-systems: a canonical nonlinear form. Math Biosci 87: 83–115 (1987).

    Article  Google Scholar 

  • Sibjesma WFH, Almeida JS, Reis MAM, Santos H. Evidence for uncoupling effect of nitrite during of denitrification by Pseudomonas fluorescens: in vivo P-NMR study. Biotechnol Bioeng 52: 176–182 (1996).

    Article  Google Scholar 

  • Sorribas A, Cascante M. Structure identifiability in metabolic pathways: parameter estimation in models based on the power-law formalism. Biochem J 298: 303–311 (1994).

    PubMed  CAS  Google Scholar 

  • Torres NV, Voit, EO. Pathway Analysis and Optimization in Metabolic Engineering. Cambridge University Press, Cambridge, in press (2003).

    Google Scholar 

  • Voit EO (Ed). Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity. Van Nostrand Reinhold, New York (1991).

    Google Scholar 

  • Voit EO. Symmetries of S-systems. Math Biosci 109: 19–37 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Voit EO. Computational Analysis of Biochemical Systems. A Practical Guide for Biochemists and Molecular Biologists. Cambridge University Press, Cambridge (2000).

    Google Scholar 

  • Voit EO. Models-of-data and models-of-processes in the post-genomic era. Mathem. Biosci in pressspi (2002).

    Google Scholar 

  • Voit EO, Sands PJ. Modeling forest growth. I. Canonical approach. Ecol Model 86: 51–71 (1996).

    Article  Google Scholar 

  • Voit, EO, Savageau MA. Power-law approach to modeling biological systems; II. Application to ethanol production. J Ferment Technol 60: 229–232 (1982a).

    Google Scholar 

  • Voit EO, Savageau MA. Power-law approach to modeling biological systems; III. Methods of analysis. J Ferment Technol 60: 233–241 (1982b).

    CAS  Google Scholar 

  • V’Yugin, VV. Algorithmic complexity and stochastic properties of finite binary sequences. Comp J 42: 294–317 (1999).

    Article  Google Scholar 

  • Zhang Z, Voit EO, Schwacke LH. Parameter estimation and sensitivity analysis of S-systems using a genetic algorithm. In Methodologies for the Conception, Design, and Application of Intelligent Systems. YamakawaT, Matsumoto G (Ed) World Scientific, Singapore, (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Voit, E.O., Almeida, J. (2003). Dynamic Profiling and Canonical Modeling. In: Harrigan, G.G., Goodacre, R. (eds) Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0333-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0333-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5025-5

  • Online ISBN: 978-1-4615-0333-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics