Skip to main content

Tryptophan-Derived Sulfur-Containing Phytoalexins-a General Overview

  • Chapter
Developments in Tryptophan and Serotonin Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 527))

Abstract

Phytoalexins are low molecular weight antimicrobial compounds that are synthesized and accumulated in plants after their exposure to pathogenic microorganisms (bacteria, fungi, viruses and protozoans). They are extensively studied now as promising antifungal, potentially anticancer and plant diseases controlling agents. The article pertains to a group of indole-derived phytoalexins - brassinins, containing at least one sulfur atom in the side chain or in the ring(s), isolated from the cruciferous plants. Up today more than 20 compounds, closely related biogenetically, but exhibiting diversified biological activity have been identified. The survey summerises most promising recent results pertaining practical application of brassinins and camalexins.

As a result of our long lasting interest and research in the field of sulfur containing, sometimes tryptophane-derived alkaloids, some monograph chapters were prepared and published’’’. Thus, in 1991 we reported for the first time an isolation of indolic, S-containing compounds exhibiting clear antifungal properties from some cruciferous species’. Tracing these compounds in the literature we prepared the review presented now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J.T. Wróbel, Sulfur-containing Alkaloids in The Alkaloids edited by A. Brossi, Vol.26(Academic Press, Orlando, CA, 1985), pp. 53–87.

    Google Scholar 

  2. J.T. Wróbel, and K. Wojtasiewicz, Sulfur-containing AlkaloidsinThe Alkaloids, edited by G.A. Cordell, (Academic Press, San Diego, CA, 1992), Vol.42,pp. 249–297,.

    Google Scholar 

  3. R. Hammerschmidt, Phytoalexins: What have we learnt after 60 years?Ann. Rev. Phytopatol.37,285–306 (1994).

    Article  Google Scholar 

  4. A.E. Osbourn, Antimicrobial Phytoprotectants and Fungal Pathogens: A commentary“Fungal Genetics and Biology 26,163–168 (1999).

    Article  PubMed  CAS  Google Scholar 

  5. M.S.C. Pedras, F.I. Okanga, I.L. Zaharia, A.Q. Khan, Phytoalexins from Crucifers: Synthesis, Biosynthesis, and BiotransformationsPhytochemistry 53,161–176 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. R.A. Dixon, Natural products and plant disease resistanceNature 411(6839), 843–847 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. M. Takasugi, N. Katsui and A. ShirataJ. Chem. Soc., Chem. Commun.1077–1078 (1986).

    Google Scholar 

  8. M. Takasugi, K. Monde, N. Katsui and A. Shirata, Novel Sulfur-containing Phytoalexins from Chinese CabbageBrassica camp.L. ssp. Pekinensis (Cruciferae),Bull. Soc. Chem. Japan 61,285–289 (1988).

    Article  CAS  Google Scholar 

  9. L.M. Browne, K.L. Conn, W.A. Ayer and J.P. Tewan, The Camalexins: New Phytoalexins Produced in the Leaves ofCamelina saliva (Cruciferae) Tetrahedron 47, 3909–3914 (1991).

    Article  CAS  Google Scholar 

  10. M.S.C. Pedras, K.C. Smith, Sinalexin, a Phytoalexin from White Mustard Elicited by Destruxin B andAlternaria brassicae Phytochemistry 46, 833–837 (1997).

    Article  CAS  Google Scholar 

  11. P. Kutschy, M. Suchy, A. Andreani, M. Dzurilla, M. Rossi, A New Photocyclization Approach to the Rare 1,3-tiazino[6,5-bjindol-4-one DerivativesTetr. Letters 42,9281–9283 (2001).

    Article  CAS  Google Scholar 

  12. Z. Naturforsch. Sect. C 49281–285 (1994).

    Google Scholar 

  13. M. Takasugi, K. Monde, N. Katsui, A. ShirataChem. Lett. 1987,1632–1634.

    Google Scholar 

  14. K. Monde, K. Sasaki, A. Shirata, M. TakasugiPhytochemistry 291499–1500 (1990).

    Article  CAS  Google Scholar 

  15. K. Monde, M. Takasugi A. Shirata, Three Sulfur-containing Stress Metabolites from Japanese RadishPhytochemistry 39,581–586 (1995).

    Article  CAS  Google Scholar 

  16. K. Monde, K. Sasaki, A. Shirata, M. Takasugi, Studies on Stress Metabolites. Part 13. Brassicanal C and two dioxindoles from cabbagePhytochemistry 30,2915–2917 (1991).

    Article  CAS  Google Scholar 

  17. M. Devys, M. Barbier, A. Kohlmann, T. Rouxel, J.F. BousquetPhytochemistry 29,1087–1088 (1990).

    Article  CAS  Google Scholar 

  18. T. Rouxel, A. Kohlmann, L. Boulliard, R. Mithen, Abiotic Elicitation of Indole Phytoalexins and Their Resistance to Leptospheria maculansPlanta 184,271–278 (1991).

    Article  CAS  Google Scholar 

  19. K. Monde, K. Katsui, A. Shirata, M. Takasugi, Brassitin, Methoxybrassitin & Brassicanal A from Chinese cabbageBrassica campestrisL. ssp. Pekinensis Chem. Lett. 19,209–210 (1990).

    Article  Google Scholar 

  20. K. Monde, K. Sasaki, A. Shirata, M. Takasugi, Methoxybrassenins A and B, Sulfur-containing Stress Metabolites fromBrassica oleaceravar.Capitata,Phytochemistry 30,3921–3922 (1991).

    Article  CAS  Google Scholar 

  21. D.A. Dempsey, J. Shah, D.F. Klessig, Salicylic Acid and Disease Resistance in PlantsCRC Rev. Plant Sci. 18,547–575 (1999).

    Article  CAS  Google Scholar 

  22. G. Brader, E. Tas, E.T. Palva, Jasmonate-dependent induction of Indole Glucosinolates in Arabidopsis by Culture Filtrates of the Nonspecific Pathogen Erwinia carotovoraPlant Physiology 126,849–860 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. K. Monde, M. Takasugi, T. Ohnishi, Biosynthesis of Cruciferous PhytoalexinsJ. Am. Chem. Soc. 116.6650–6657 (1994).

    Article  CAS  Google Scholar 

  24. M. Zook, R. Hammerschmidt, Origin of the Thiazole Ring of Camalexin, a Phytoalexin from Arabidopsis thalianaPlant Physiology 113,463–468 (1997).

    Article  PubMed  CAS  Google Scholar 

  25. M.S.C. Pedras, S. Montaut, Y.M. Xu, A.Q. Khan, A. Loukaci, Assembling the Biosynthetic Puzzle of Crucifer Methabolites: Indole-3-acetaldoxime is Incorporated Efficiently into Phytoalexins but Glucobrassicin is notJ.Chem. Soc. Chem. Commun.1572–1573 (2001).

    Google Scholar 

  26. M.S.C. Pedras, C.M. Nycholat, Y. Xu, A.Q. Khan, Chemical Defences of Crucifers: Elicitation and Metabolism of Phytoalexins and Indole-3-acetonitrile in Brown Mustard and TurnipPhytochemistry 59,611–625 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. J.M. Zhao, R.L. Last; Coordinate Regulation of the Tryprophane Biosynthetic Pathway and Indolic Phytoalexin Accumulation in ArabodopsisPlant Cell 8,2235–2244 (1996).

    PubMed  CAS  Google Scholar 

  28. J. Hegemeier, B. Schneider, N.J.Oldham, K. Hahlbrock, Accumulation of soluble and Wall-bound Indolic Metabolites in Arabidopsis thaliana Leanes Infected with Virulent or Avirulent Pseudomonas syringae Pathovar Tomato StrainsProc. Natl. Acad. Sci. USA 98,753–758 (2001).

    Article  Google Scholar 

  29. M.S.C. Pedras, A. Loukaci, F.I. Okanga, The Cruciferous Phytoalexins Brassinin and Cyclobrassinin are Intermediates in the Biosynthesis of BrassilexinBioorg. Med. Chem. Letters 8,3037–3038 (1998).

    Article  CAS  Google Scholar 

  30. J.M. Zhao, C.C, Wiliams, R.L. Last, Induction of Arabidopsis Tryptophan Pathway Enzymes and Camalexin by Amino Acid Starvation, Oxidative Stress and an Abiotic ElicitorPlant Cell 10,359–370 (1998).

    PubMed  CAS  Google Scholar 

  31. M. Zook, Biosynthesis of Camalexin from Tryptophan Intermediates in Cell-suspention Cultures of ArabidopsisPlant Prys. 118,1389–1393 (1998).

    Article  CAS  Google Scholar 

  32. M.S.C. Pedras, A.Q. Khan and J.L. Taylor, Phytoalexins from Brassicas. Overcoming Plants’ DefencesPhytochemicals for Pest Control. ACS Sym Ser. 658,I55–166 (1997).

    Google Scholar 

  33. P. Kutschy, M. Dzurilla, M. Takasugi, M. Torok, I. Achbergerova, R. Homzova, M. Racova, New Syntheses of Indole Phytoalexins and Related CompoundsTetrahedron54,3549–3566 (1998).

    Article  CAS  Google Scholar 

  34. M. Dzurilla, P. Kutschy, J.P. Tewari, M. Ruzinsky, S.Senvicky, V. Kovacik, Synthesis snd Antifungal Activity of New Indolylthiazinone DerivativesColl. Czech. Chem. Commun. 63,94–102 (1998).

    Article  CAS  Google Scholar 

  35. M. Dzurilla, M. Ruzinsky, P. Kutschy, J.P. Tewari, V. Kovacik, Application of 2-Substituted Ethyl Isocyanates and 2-Aminothiols in the Synthesis of the Analogs of Indole Phytoalexin CamalexinColl. Czech. Chem. Commun. 64, 1448–1456 (1999).

    Article  CAS  Google Scholar 

  36. P. Kutschy, M. Dzurilla, M. Takasugi, A. Sabova, Synthesis of Some Analogs of Indole Phytoalexin Brassinin and Methoxybrassenin B and Their Positional IsomersColl. Czech. Chem. Commun. 64,348–362 (1999).

    Article  CAS  Google Scholar 

  37. K. Monde, S. Osawa, N. Harada, M. Takasugi, M. Suchy, P. Kutschy, M. Dzurilla, E. Balentova, Synthesis and Absolute Stereochemistryof a Cruciferous Phytoalexin, (-)SpirobrassininChem. Lett.886–887 (2000).

    Google Scholar 

  38. K. Monde, N. Harada, M. Takasugi, P. Kutschy, M. Suchy, M. Dzurilla, Enantiomeric Excess of a Cruciferous Phytoalexin, Spirobrassinin, and Its Enantiomeric Enrichment in an Achiral HPLC SystemJ. Nat. Prod. 63,1312–1314 (2000).

    Article  PubMed  CAS  Google Scholar 

  39. P. Kutschy, M. Suchy, M. Dzurilla, P. Pazdera, M. Takasugi V. Kovacik, Spirocyclization of (satin with Chiral Alpha-aminothiols: Diastereoselective Synthesis of (-) and (+) 4’-(methoxycarbonyl)spiro[indoline3,2’thiazolidinj-2-oneColl. Czech. Chem. Commun. 65,425–433 (2000).

    Article  CAS  Google Scholar 

  40. M. Dzurilla, P. Kutschy, J. Zaletova, M. Ruzinsky, V. Kovacik, Synthesis of CamalexinMolecules 6,716–720 (2001).

    Article  CAS  Google Scholar 

  41. M. Suchy, P. Kutschy, K. Monde, H. Goto, N. Harada, M. Takasugi, M. Dzurilla, E. Balentova, Synthesis, Absolute Configuration, and Enantiomeric Enrichment of a Cruciferous Oxindole Phytoalexin, (S)-(-)spirobrassinin, and Its Oxazoline AnalogJ. Org. Chem. 66,3940–3947 (2001).

    Article  PubMed  CAS  Google Scholar 

  42. M. Suchy, P. Kutschy, M. Dzurilla, V. Kovacik, A. Andreani, J. Alfoldi, 1,3-Thiazino[6,5-b]indol-4-one Synthesis. The First Synthesis of Indole Phytoalexin CyclobrassinonTetrahedron Lett. 42,6961–6963 (2001).

    Article  CAS  Google Scholar 

  43. E.E. Rogers, J. Glazerbrook, F.N. Ausubel, Mode of Action of the Arabidopsis thaliana Phytoalexin Camalexin and Its Role in Arabidopsis-Pathogen InteractionsMol. Plant-Microbe. Inter. 9,748–757 (1996).

    Article  CAS  Google Scholar 

  44. B.P.H.J. Thomma, I. Nelissen, K. Eggermont, W.F. Brekaert, Deficiency in Phytoalexin Production Causes Enhanced Susceptibility of Arabidopsis thaliana to the Fungus Alternaria BrassicolaPlant J. 19,163–171 (1999).

    Article  PubMed  CAS  Google Scholar 

  45. M.S.C. Pedras, F.I. Okanga, Strategies of Cruciferous Pathogenic Fungi: Detoxification of the Phytoalexin Cyclobrassinin by MimicryJ. Agr. Food Chem. 47,1196–1202 (1999).

    Article  CAS  Google Scholar 

  46. M.S.C. Pedras, F.I. Okanga, Metabolism of Analogs of the Phytoalexin Brassinin by Pathogenic FungiCan. J. Chem. 78,338–346 (2000).

    CAS  Google Scholar 

  47. M.S.C. Pedras, A.Q. Khan, Biotransformation of the Phytoalexin Camalexin by the Phytopatogen Rhizoctonia solaniPhytochemistry 53,59–69 (2000).

    Article  PubMed  CAS  Google Scholar 

  48. W.A. Ayer, P.A. Craw, Yu-ting Ma, S. Miao, Synthesis of Camalexin and Related PhytoalexinsTetrahedron 48,2914–2924 (1991).

    Google Scholar 

  49. M. Sabot, P. Kutschy, L. Siegfried, A. Mirossay, M. Suchy, H. Hrbkova, M. Dzurilla, R. Maruskova, J. Srakova, E. Paulikova, Cytotoxic Effect of Cruciferous Phytoalexin against Murine LI210 Leukemia and B16 MelanomaBiologia 55,701–701 (2000).

    Google Scholar 

  50. N. Zhou, T.L. Tootle, J. Glazerbrook, Arabidopsis PAD3, a gene Required for Camalexin BiosynthesisPlant Cell. 11,2419–2428 (1999).

    PubMed  CAS  Google Scholar 

  51. Z.K. Punja, Genetic Engineering of Plants to Enhance Resistance to Fungal Pathogens — a Review of Progress and Future ProspectsCan. J. Plant Path. 23,216–235 (2001).

    Article  CAS  Google Scholar 

  52. R.J. Grayer, T. Kokubu, Plant-fungal Interaction: the Search for Phytoalexins and Other Antifungal Compounds from Higher PlantsPhytochemistry 56,253–263 (2001).

    Article  PubMed  CAS  Google Scholar 

  53. Anon., Arabidopsis Genome Initiative 2000Nature 408,796–815 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ruszkowska, J., Wróbel, J.T. (2003). Tryptophan-Derived Sulfur-Containing Phytoalexins-a General Overview. In: Allegri, G., Costa, C.V.L., Ragazzi, E., Steinhart, H., Varesio, L. (eds) Developments in Tryptophan and Serotonin Metabolism. Advances in Experimental Medicine and Biology, vol 527. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0135-0_72

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0135-0_72

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4939-6

  • Online ISBN: 978-1-4615-0135-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics