Skip to main content

Flux Pinning and Percolation in High-TC Oxide Superconductors

  • Chapter
Advances in Cryogenic Engineering Materials

Abstract

Critical current characteristics in quench and melt growth (QMG) processed Y-Ba-Cu-O are investigated by ac inductive measurements. The critical current in these samples is percolative as is observed in sintered materials. However, this percolative behavior is not caused by weak-link grain boundaries but seems to be mainly attributed to layers of nonsuperconducting solidified melt. The experimental result of magnetization critical current density is compared with the theoretical estimate from the effective medium theory. It is also found that the shielding current with very high density flows locally inside the sample. Candidates for the dominant pinning centers in QMG processed samples are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Tanaka and H. Itozaki, Jpn. J. Appl. Phys. 27, L622 (1988).

    Article  CAS  Google Scholar 

  2. B. Roas, L. Schultz, and G. Endres, Appl. Phys. Lett. 53, 1557 (1988).

    Article  CAS  Google Scholar 

  3. K. Watanabe, H. Yamane, H. Kurosawa, T. Hirai, N. Kobayashi, H. Iwasaki, K. Noto, and Y. Muto, Appl. Phys. Lett. 54, 575, (1989).

    Article  CAS  Google Scholar 

  4. M. Okada, R. Nishiwaki, T. Kamo, T. Matsumoto, K. Aihara, S. Matsuda, and M. Seido, Jpn. J. Appl. Phys. 27, L2345 (1988).

    Article  CAS  Google Scholar 

  5. T. Hikata, K. Sato, and H. Hitotsuyanagi, Jpn. J. Appl. Phys. 28, L82 (1989).

    Article  CAS  Google Scholar 

  6. K. Osamura, Ext. Abstract of ISTEC Workshop on Superconductivity, Oiso, 1989, p. 107.

    Google Scholar 

  7. S. Jin, T. H. Tiefel, R. C. Sherwood, M. E. Davis, R. B. van Dover, G. W. Kammlott, R. A. Fastnacht, and H. D. Keith, Appl. Phys. Lett. 52, 2074 (1988).

    Article  CAS  Google Scholar 

  8. M. Murakami, S. Matsuda, K. Sawano, K. Miyamoto, A. Hayashi, M. Morita, K. Doi, H. Teshima, M. Sugiyama, M. Kimura, M. Fujinami, M. Saga, M. Matsuo, and H. Hamada, Adv. in Superconductivity (Springer-Verlag, Tokyo, 1989) p. 247.

    Google Scholar 

  9. M. Murakami, M. Morita, K. Miyamoto, and S. Matsuda, Prog, in High Temperature Superconductivity (World Scientific, Singapore, 1989) p. 95.

    Google Scholar 

  10. H. Kupfer, I. Apfelstedt, W. Schauer, R. Flûkiger, R. Meier-Hirmer, and H. Wuhl, Z. Phys. B 69, 159 (1987).

    Article  Google Scholar 

  11. B. Ni, T. Munakata, T. Matsushita, M. Iwakuma, K. Funaki, M. Takeo, and K. Yamafuji, Jpn. J. Appl. Phys. 27, 1658 (1988).

    Article  CAS  Google Scholar 

  12. H. Kupfer, I. Apfelstedt, R. Flükiger, C. Keller, R. Meier-Hirmer, B. Runtsch, A. Turowski, U. Wiech, and T. Wolf, Cryogenics 29, 268 (1989).

    Article  Google Scholar 

  13. T. Matsushita, B. Ni, K. Yamafuji, K. Watanabe, K. Noto, H. Morita, H. Fujimori, and Y. Muto, Adv. in Superconductivity (Springer-Verlag, Tokyo, 1989) p. 393.

    Google Scholar 

  14. D. Dimos, P. Chaudhari, J. Mannhart, and F. K. LeGoues, Phys. Rev. Lett. 61, 219 (1988).

    Article  CAS  Google Scholar 

  15. T. Matsushita, B. Ni, and K. Yamafuji, Cryogenics 29, 384 (1989).

    Article  CAS  Google Scholar 

  16. S. Kirkpatrick, Phys. Rev. Lett. 27, 1722 (1971).

    Article  Google Scholar 

  17. M. Murakami, private communication.

    Google Scholar 

  18. M. Murakami, M. Morita, and N. Koyama, to be published in Jpn. J. Appl. Phys.

    Google Scholar 

  19. T. Matsushita, S. Funaba, Y. Nagamatsu, B. Ni, K. Funaki, and K. Yamafuji, to be published in Jpn. J. Appl. Phys.

    Google Scholar 

  20. T. Matsushita and B. Ni, IEEE Trans. Magn. MAG-25, 2285 (1989).

    Article  Google Scholar 

  21. E.V. Thuneberg, J. Kurkijärvi, and D. Rainer, Phys. Rev. B 29, 3913 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Matsushita, T., Ni, B., Yamafuji, K. (1990). Flux Pinning and Percolation in High-TC Oxide Superconductors. In: Reed, R.P., Fickett, F.R. (eds) Advances in Cryogenic Engineering Materials . An International Cryogenic Materials Conference Publication, vol 36. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-9880-6_52

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9880-6_52

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-9882-0

  • Online ISBN: 978-1-4613-9880-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics