Skip to main content

Robust Estimators of Location and Their Second-Order Asymptotic Relations

  • Conference paper
A Celebration of Statistics

Abstract

Let X 1, …, X n be independent random variables, identically distributed according to the distribution function F(x — θ), where θ is the parameter to be estimated. F is generally unspecified; we only assume that F has a symmetric density f. Three broad classes of robust estimators of θ, these of M-estimators, L-estimators, and R-estimators, are first briefly described. Denoting these estimators M n, L n, and R n, respectively, we give sufficient conditions under which these estimators are asymptotically equivalent in probability, i.e., \(\sqrt n (M_n - L_n )\xrightarrow{p}0\), etc., as n → ∞. These relations are supplemented by the rates of convergence in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  • Adichie, J. N. (1967). “Estimate of regression parameters based on rank tests.” Ann. Math. Statist 38, 894–904.

    Article  MathSciNet  MATH  Google Scholar 

  • Akahira, M. (1975a). “Asymptotic theory for estimation of location in non-regular cases, I: Orders of convergence of consistent estimators.” Rep. Stat. Appl. Res. JUSE, 22, No. 1.

    Google Scholar 

  • Akahira, M. (1975b). “Asymptotic theory for estimation of location in non-regular cases, II: Bounds of asymptotic distribution of consistent estimators.” Rep. Stat. Appl. Res. JUSE, 22, No. 3.

    MathSciNet  Google Scholar 

  • Akahira, M. and Takeuchi, K. (1981). Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency. Lecture Notes in Statistics, 7. New York: Springer-Verlag.

    Google Scholar 

  • Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J., Rogers, W. H., and Tukey, J. W. (1972). Robust Estimation of Location: Survey and Advances. Princeton: Princeton U. P.

    Google Scholar 

  • Bickel, P. J. (1965). “On some robust estimates of location.” Ann. Math. Statist., 36. 847–858.

    Article  MathSciNet  MATH  Google Scholar 

  • Bickel, P. J. (1973). “On some analogies to linear combinations of order statistics in the linear model.” Ann. Statist 1, 597–616.

    Article  MathSciNet  MATH  Google Scholar 

  • Bickel, P. J. (1976). “Another look at robustness: A review of reviews and some new developments.” Scand. J. Statist., 3, 145–168.

    MathSciNet  MATH  Google Scholar 

  • Carroll, R. J. (1978). “On almost sure expansions for M-estimators.” Ann. Statist., 6, 314–318.

    Article  MathSciNet  MATH  Google Scholar 

  • Chernoff, H., Gastwirth, J. L., and Johns, M. V. (1967). “Asymptotic distribution of linear combinations of order statistics.” Ann. Math. Statist., 38, 52–72.

    Article  MathSciNet  MATH  Google Scholar 

  • Csörgő, M. and Révész, P. (1981). Strong Approximations in Probability and Statistics. Budapest: Akademiai Kiado.

    Google Scholar 

  • David, H. A. (1970). Order Statistics. New York: Wiley.

    MATH  Google Scholar 

  • Gastwirth, J. (1966). “On robust procedures.” J. Amer. Statist. Assoc., 61, 929–948.

    Article  MathSciNet  MATH  Google Scholar 

  • Helmers, R. (1981). “A Berry-Esseen theorem for linear combinations of order statistics.” Ann. Probab., 9, 342–347.

    Article  MathSciNet  MATH  Google Scholar 

  • Hodges, J. L. and Lehmann, E. L. (1963). “Estimates of location based on rank tests.” Ann. Math. Statist., 34, 598–564.

    Article  MathSciNet  MATH  Google Scholar 

  • Huber, P. J. (1964). “Robust estimation of a location parameter.” Ann. Math. Statist., 35, 73–101.

    Article  MathSciNet  MATH  Google Scholar 

  • Huber, P. J. (1972). “Robust statistics: A review.” Ann. Math. Statist., 43, 1041–1067.

    Article  MathSciNet  MATH  Google Scholar 

  • Huber, P. J. (1973). “Robust regression: Asymptotics, conjectures and Monte Carlo.” Ann. Statist., 1, 799–821.

    Article  MathSciNet  MATH  Google Scholar 

  • Huber, P. J. (1977). Robust Statistical Procedures. Philadelphia: SIAM.

    MATH  Google Scholar 

  • Huber, P. J. (1981). Robust Statistics. New York: Wiley.

    Book  MATH  Google Scholar 

  • Hušková, M. (1982). “On bounded length sequential confidence interval for parameter in regression model based on ranks.” Coll. Math. Soc. Janos Bolyai, 32, 435–463.

    Google Scholar 

  • Hušková, M. and Jurečková, J. (1981). “Second order asymptotic relations of M-estimators and R-estimators in two-sample location model.” J. Statist. Planning and Inference, 5, 309–328.

    Article  MATH  Google Scholar 

  • Hušková, M. Jurečková, J. (1985). “Asymptotic representation of R-estimators of location.” In Proceedings of the 4th Pannonian Symposium. Amsterdam: North-Holland (to appear).

    Google Scholar 

  • Inagaki, N. (1974). “The asymptotic representation of the Hodges-Lehmann estimator based on Wilcoxon two-sample statistics.” Ann. Inst. Statist. Math., 26, 457–466.

    MathSciNet  Google Scholar 

  • Ibragimov, I. A. and Hasminskii, R. Z. (1981). Asymptotic Theory of Estimation. New York: Springer-Verlag.

    Google Scholar 

  • Jaeckel, L. A. (1971). “Robust estimates of location: Symmetry and asymmetric contamination.” Ann. Math. Statist., 42, 1020–1034.

    Article  MathSciNet  MATH  Google Scholar 

  • Jaeckel, L. A. (1972). “Estimating regression coefficients by minimizing the dispersion of the residuals.” Ann. Math. Statist., 43, 1449–1458.

    Article  MathSciNet  MATH  Google Scholar 

  • Jung, J. (1955). “On linear estimates defined by a continuous weight function.” Ark. Math., 3, 199–209.

    Article  Google Scholar 

  • Jurečková, J. (1971). “Nonparametric estimate of regression coefficients.” Ann. Math. Statist., 42, 1328–1338.

    Article  MathSciNet  MATH  Google Scholar 

  • Jurečková, J. (1977). “Asymptotic relations of M-estimates and R-estimates in linear regression model.” Ann. Statist., 5, 464–472.

    Article  MathSciNet  MATH  Google Scholar 

  • Jurečková, J. (1980). “Asymptotic representation of M-e stimators of location.” Math. Operationsforsch. Statist. Ser. Statist., 11, 61–73.

    MathSciNet  MATH  Google Scholar 

  • Jurečková, J. (1982). “Robust estimators of location and regression parameters and their second order asymptotic relations.” In Proceedings of the 9th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes. Dordrecht: Reidel, 19–32.

    Google Scholar 

  • Jurečková, J. (1983a). “Winsorized least-squares estimator and its M-estimator counterpart.” In P. K. Sen (ed.). Contributions to Statistics: Essays in Honour of Norman L. Johnson. Amsterdam: North-Holland, 237–245.

    Google Scholar 

  • Jureckova, J. (1983b). “Asymptotic behavior of M-estimators in non-regular cases.” Statistics & Decisions, 1, 323–340.

    MathSciNet  MATH  Google Scholar 

  • Jurečková, J. and Sen, P. K. (1981a). “Invariance principles for some stochastic processes relating to M-estimators and their role in sequential statistical inference.” Sankhya, A43, 190–210.

    Google Scholar 

  • Jurečková, J. and Sen, P. K. (1981b). “Sequential procedures based on M-estimators with discontinuous score-functions.” Journ. Statist. Planning and Inferences, 5, 253–266.

    Article  MATH  Google Scholar 

  • Jurečková, J. and Sen, P. K. (1984). “On adaptive scale equivariant M-estimators in linear models.” Statistics & Decisions, Supplement Issue No 1, 31–46.

    Google Scholar 

  • Kiefer, J. (1967). “On Bahadur’s representation of sample quantiles.” Ann. Math. Statist., 38, 1323–1342.

    Article  MathSciNet  MATH  Google Scholar 

  • Koenker, R. and Bassett, G. (1978). “Regression quantiles.” Econometrica, 46, 33–50.

    Article  MathSciNet  MATH  Google Scholar 

  • Koul, H. L. (1971). “Asymptotic behavior of a class of confidence regions based on ranks in regression.” Ann. Math. Statist., 42, 466–476.

    Article  MathSciNet  MATH  Google Scholar 

  • Lloyd, E. H. (1952). “Least squares estimation of location and scale parameters using order statistics.” Biometrika, 34, 41–67.

    MathSciNet  Google Scholar 

  • Portnoy, S. L. (1977). “Robust estimation in dependent situations.” Ann. Statist., 5, 22–43.

    Article  MathSciNet  MATH  Google Scholar 

  • Riedl, M. (1979). “M-estimators of regression and location.” Unpublished Thesis. Prague: Charles Univ. (In Czech.)

    Google Scholar 

  • Rivest, L. P. (1982). “Some asymptotic distributions in the location-scale model.” Ann. Inst. Statist. Math., A34, 225–239.

    Article  MathSciNet  Google Scholar 

  • Ruppert, D. and Carroll, R. J. (1980). “Trimmed least-squares estimation in the linear model.” J. Amer. Statist. Assoc., 75, 828–838.

    Article  MathSciNet  MATH  Google Scholar 

  • Sarhan, A. E. and Greenberg, E. Q. (eds.) (1962). Contributions to Order Statistics. New York: Wiley.

    MATH  Google Scholar 

  • Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. New York: Wiley

    Book  MATH  Google Scholar 

  • Shorack, G. R. (1969). “Asymptotic normality of linear combinations of functions of order statistics.” Ann. Math. Statist., 40, 2041–2050.

    Article  MathSciNet  MATH  Google Scholar 

  • Shorack, G. R. (1972). “Functions of order statistics.” Ann. Math. Statist., 43, 412–427.

    Article  MathSciNet  MATH  Google Scholar 

  • Stigler, S. M. (1969). “Linear functions of order statistics.” Ann. Math. Statist., 40, 770–788.

    Article  MathSciNet  MATH  Google Scholar 

  • Stigler, S. M. (1973). “The asymptotic distribution of the trimmed mean.” Ann. Statist., 1, 472–477.

    Article  MathSciNet  MATH  Google Scholar 

  • Stigler, S. M. (1974). “Linear functions of order statistics with smooth weight function.” Ann. Statist., 2, 676–693.

    Article  MathSciNet  MATH  Google Scholar 

  • van Eeden, C. (1983). “On the relation between L-estimators and M-estimators and asymptotic efficiency relative to the Cramer-Rao lower bound.” Ann. Statist., 11, 674–690.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag New York Inc.

About this paper

Cite this paper

Jurečková, J. (1985). Robust Estimators of Location and Their Second-Order Asymptotic Relations. In: Atkinson, A.C., Fienberg, S.E. (eds) A Celebration of Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8560-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8560-8_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8562-2

  • Online ISBN: 978-1-4613-8560-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics