Skip to main content

Comparative Organization of Mammalian Auditory Cortex

  • Conference paper
Comparative Studies of Hearing in Vertebrates

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

A range of species will be discussed here. Domestic cats, however, will receive the most attention since most of the research on auditory cortex has used them as experimental animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abeles, M., Goldstein, M. H., Jr.: Functional architecture in cat auditory cortex: columnar organization and organization according to depth. J. Neurophysiol. 33, 172–187(1970).

    PubMed  CAS  Google Scholar 

  • Ades, H. W.: Connections of the medial geniculate body in the cat. Arch. Neurol. Psychiat. 45, 138–144(1941).

    Google Scholar 

  • Ades, H. W.: A secondary acoustic area in the cerebral cortex of the cat. J. Neurophysiol. 6, 59–63 (1943).

    Google Scholar 

  • Ades, H. W.: Central auditory mechanisms. In: Handbook of Physiology, Section 1, Vol. 1, Neurophysiology. Washington: Amer. Physiolog. Soc., pp. 585–716, 1959.

    Google Scholar 

  • Andersen, R. A., Patterson, H., Knight, P., Crandall, B., Merzenich, M. M.: Thalamocortical, corticothalamic and corticotectal projections to and from physiologically identified loci within the auditory cortical fields: AAF, All and AI. Soc. for Neurosci. Abstracts. 3, No. 2 (1977).

    Google Scholar 

  • Bailey, P., von Bonin, G., Garol, H. W., McCulloch, W. S.: Functional organization of temporal lobe of monkey (Macaca mulatta) and chimpanzee (Pan satyrus). J. Neurophysiol. 6, 121–128 (1943).

    Google Scholar 

  • Beck, E.: Die myeloarchitektonische Bau des in der Sylvischen Furche gelegenen Teiles des Schlafenlappens beim Schimpansen (Troglodytes niger). J. Psychol. Neurol. (Leipzig). 38, 309–420 (1929).

    Google Scholar 

  • Bremer, F.: Some Problems in Neurophysiology. London: Athlone Press, 1953.

    Google Scholar 

  • Bremer, F., Dow, R. S.: The cerebral acoustic area of the cat. A combined oscillographic and cytoarchitectonic study. J. Neurophysiol. 2, 308–318 (1939).

    Google Scholar 

  • Campbell, A. W.: Histological Studies on the Localization of Cerebral Function. Cambridge: Cambridge University Press, 1905, 360 pp.

    Google Scholar 

  • Clopton, B. M., Winfield, J. A., Flammino, F. J.: Tonotopic organization over levels of the auditory system. J. Acoust. Soc. Amer. 54, 284 (1973).

    Article  Google Scholar 

  • Colwell, S. A., Merzenich, M. M.: Organization of the thalamocortical and corticothalamic projections to and from physiologically defined loci within primary auditory cortex of the cat. Anat. Ree. 181, 336 (1975).

    Google Scholar 

  • Diamond, I. T., Hall, W. C.: Evolution of neocortex. Science. 164, 251–262 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Downman, C. B. B., Woolsey, C. N., Lende, R. A.: Auditory areas I, II, and EP: cochlear representation, afferent paths and interactions. Bull. Johns Hopkins Hosp. 106, 127–142(1960).

    PubMed  CAS  Google Scholar 

  • Evans, E. F.: Cortical representation. In: Ciba Foundation Symposium on Hearing Mechanisms in Vertebrates, de Reuck, A. V. S., Knight, J. (eds.). London: Churchill, 1968.

    Google Scholar 

  • Evans, E. F.: Neural processes for the detection of acoustic patterns and for sound localization. In: The Neurosciences. Schmidt, F. O., Worden, F. G. (eds.). Cambridge, Mass.: The MIT Press, 1974.

    Google Scholar 

  • Evans, E. F., Ross, H. F., Whitfield, I. C.: The spatial distribution of unit characteristic frequency in the primary auditory cortex of the cat. J. Physiol. (London). 179,238–247 (1965).

    CAS  Google Scholar 

  • Evans, E. F., Whitfield, I. C.: Classification of unit responses in the auditory cortex of the unanesthetized and unrestrained cat. J. Physiol. (London). 171, 476–495 (1964).

    CAS  Google Scholar 

  • Ferrier, D.: The Functions of the Brain. London: Smith, Elder and Co., 1876, pp. 138–171.

    Book  Google Scholar 

  • Gardner, R. A., Gardner, B. T.: Teaching sign language to a chimpanzee. Science. 165, 664–672(1969).

    Article  PubMed  CAS  Google Scholar 

  • Gazzaniga, M. S., Sperry, R. W.: Language after section of the cerebral commissures. Brain Res. 90, 131–148 (1967).

    CAS  Google Scholar 

  • Gerstein, G. L., Kiang, N. Y. S.: Responses of single units in the auditory cortex. Exp. Neurol. 10, 1–18 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Geschwind, N., Levitsky, W.: Human brain: left-right asymmetries in temporal speech region. Science. 161, 186–187 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, M. H., Jr., Abeles, M.: Note on tonotopic organization of primary auditory cortex in the cat. Brain Res. 100, 188–191 (1975).

    Article  PubMed  Google Scholar 

  • Goldstein, M. H., Jr., Abeles, M., Daly, R. L., Mcintosh, J.: Functional architecture in cat primary auditory cortex: tonotopic organization. J. Neurophysiol. 33, 188–197(1970).

    PubMed  Google Scholar 

  • Greenwood, D. D.: Critical bandwidth and the frequency coordinates of the basilar membrane. J. Acoust. Soc. Amer. 33, 1344–1356 (1961).

    Article  Google Scholar 

  • Greenwood, D. D.: Critical bandwidth in man and in some other species in relation to the travelling wave envelope. In: Sensation and Measurement. Moskowitz, H. R., Scharf, B., Stevens, J. C. (eds.). Dordrecht: D. Reidel, 1974, pp. 231–239.

    Chapter  Google Scholar 

  • Hamilton, C. R.: An assessment of hemispheric specialization in monkeys. Ann. N. Y. Acad. Sci. 299, 222–232 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Hellweg, F. C., Koch, R., Vollrath, M.: Representation of the cochlea in the neocortex of guinea pig. Exp. Brain Res. 29, 467–474 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Hind, J. E.: An electrophysiological determination of tonotopic organization in auditory cortex of the cat. J. Neurophysiol. 16, 475–489 (1953).

    PubMed  CAS  Google Scholar 

  • Hind, J. E., Rose, J. E., Davies, P. W., Woolsey, C. N., Benjamin, R. M., Welker, W., Thompson, R. F.: Unit activity in the auditory cortex. In: Neural Mechanisms of the Auditory and Vestibular Systems. Rasmussen, C., Windle, W. (eds.). Springfield, Ill.: Charles C. Thomas, 1960, pp. 201–210.

    Google Scholar 

  • Imig, T. J., Ruggero, M. A., Kitzes, L. M., Javel, E., Brugge, J. F.: Organization of auditory cortex in the owl monkey (Aotus trivirgatus). J. Comp. Neurol. 171, 111–128 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Kaas, J. H., Hall, W. C., Diamond, I. T.: Cortical visual areas I and II in the hedgehog: relation between evoked potential maps and cytoarchitectonic subdivisions. J. Neurophysiol. 33,595–615 (1970).

    PubMed  CAS  Google Scholar 

  • Kawamura, K.: Variations of the cerebral sulci in the cat. Acta Anat. 80, 204–221 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, T. T. K: An electrophysiological study of the auditory projection on areas of the cortex in monkey (Macaca mulatta). (Thesis) Chicago: University of Chicago (1955).

    Google Scholar 

  • Kimura, D.: Functional asymmetry of the brain in dichotic listening. Cortex. 3, 163–178(1967).

    Google Scholar 

  • Knight, P. L.: Representation of the cochlea within the anterior auditory field (AAF) of the cat. Brain Res. 130, 447–467 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Kornmuller, A. E.: Die bioelektrischen Erscheinungen der Hirnrindfelder. Leipzig: G. Thieme, 1937, 118 p.

    Google Scholar 

  • Larionow, W.: Ueber die musicalischen Centren des Gehirns. Arch. ges. Physiol. 76, 608–625 (1899).

    Article  Google Scholar 

  • Licklider, J. C. R., Kryter, K. D.: Frequency localization in the auditory cortex of the monkey. Fed. Proc. 1,51 (1942).

    Google Scholar 

  • Manabe, T., Suga, N., Ostwald, J.: Aural representation in the Doppler-shifted-CF processing area of the auditory cortex of the mustache bat. Science. 200, 339–342 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Merzenich, M. M., Brugge, J. F.: Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Res. 50, 275–296 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Merzenich, M. M., Knight, P. L., Roth, G. L.: Cochleotopic organization of primary auditory cortex in the cat. Brain Res. 63, 343–346 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Merzenich, M. M., Knight, P. L., Roth, G. L.: Orderly representation of the cochlea within primary auditory cortex in the cat. J. Acoust. Soc. Amer. 55, 86 (1974).

    Article  Google Scholar 

  • Merzenich, M. M., Knight, P. L., Roth, G. L.: Representation of cochlea within primary auditory cortex in the cat. J. Neurophysiol. 38, 231–249 (1975).

    PubMed  CAS  Google Scholar 

  • Merzenich, M. M., Kaas, J. H., Roth, G. L.: Auditory cortex in the grey squirrel: tonotopic organization and architectonic fields. J. Comp. Neurol. 166, 387–402 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Mickle, W. A., Ades, H. W.: Spread of evoked cortical potentials. J. Neurophysiol. 16,608–633(1953).

    PubMed  CAS  Google Scholar 

  • Munk, H.: On the functions of the cerebral cortex. Translated by G. von Bonin. In: The Cerebral Cortex, von Bonin, G. (ed.). Springfield, Ill.: Charles C Thomas, 1881,pp. 107–108.

    Google Scholar 

  • Oliver, D. L., Merzenich, M. M., Roth, G. L., Hall, W. C., Kaas, J. H.: Tonotopic organization and connections of primary auditory cortex in the tree shrew, Tupaia glis. Anat. Rec. 184,491 (1976).

    Google Scholar 

  • Oonishi, S., Katsuki, Y.: Functional organization and integrative mechanisms of the auditory cortex of the cat. Jap. J. Physiol. 15, 342–365 (1965).

    Article  Google Scholar 

  • Pandya, D. N., Sanides, F.: Architectonic panellation of the temporal operculum in rhesus monkey and its projection pattern. Z. Anat. Entwickl. Gesch. 139, 127–161 (1973).

    Article  CAS  Google Scholar 

  • Parker, D. E.: Vertical organization of the auditory cortex of the cat. J. Audit. Res. 2,99–124(1965).

    Google Scholar 

  • Paul, R. L., Merzenich, M. M., Goodman, H.: Representation of slowly and rapidly adapting cutaneous mechanoreceptors of the hand in Broadmann’s areas 3 and 1 of Macaca mulatta. Brain Res. 36, 229–249 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Penfield, W., Roberts, L.: Speech and Brain-Mechanisms. Princteon: Princeton University Press, 1959.

    Google Scholar 

  • Premack, D.: Language in chimpanzee? Science. 172, 808–822 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Pribram, K. H., Rosner, B. S., Rosenblith, W. A.: Electrical responses to acoustic clicks in monkey: extent of neocortex activated. J. Neurophysiol. 17, 336–344 (1954).

    PubMed  CAS  Google Scholar 

  • Rasmussen, T., Milner, B.: The role of early left-brain injury in determining lateralization of cerebral speech functions. Diamond, S. J., Bilzard, D. A. (eds.), Ann. N. Y. Acad. Sci. 299, 1977, pp. 355–369.

    Article  Google Scholar 

  • Reale, R. A., Imig, T. J.: An orderly frequency representation in the posterior ecto- sylvian sulcus of the cat. Soc. for Neurosci. Abstracts. 3, No. 2 (1977).

    Google Scholar 

  • Rioch, D.: Studies on the diencephalon of carnivora. I. The nuclear configuration of the thalamus, epithalamus, and hypothalamus of the dog and cat. J. Comp. Neurol. 49, 1–120(1929).

    Article  Google Scholar 

  • Rose, J. E.: The cellular structure of the auditory region of the cat. J. Comp. Neurol. 91,409–440(1949).

    Article  PubMed  CAS  Google Scholar 

  • Rose, J. E., Woolsey, C. N.; The relations of the thalamic connections, cellular structure and evocable electrical activity in the auditory region of the cat. J. Comp. Neurol. 91,441–466(1949).

    Article  PubMed  CAS  Google Scholar 

  • Rumbaugh, D. M., Gill, T. V.: The mastery of language-type skills by the chimpanzee (Pan). In: Origins of Evolution of Language and Speech. Ann. N. Y. Acad. Sci. 280,562–578 (1976).

    Article  Google Scholar 

  • Sanides, F.: Comparative architectonics of the neocortex of mammals and their evolutionary interpretation. Ann. N. Y. Acad. Sciences. 167, 404–423 (1967).

    Article  Google Scholar 

  • Sanides, F.: Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution. In: The Primate Brain. Noback, N., Montagna, W. (eds.). New York: Appleton-Century Croft (1970).

    Google Scholar 

  • Sanides, F.: Representation in the cerebral cortex and its areal lamination pattern. In: The Structure and Function of the Nervous Tissue. Bourne, G. H. (ed.). Vol. 5. New York: Academic Press, 1972, pp. 329–453.

    Google Scholar 

  • Sanides, F.: Comparative neurology of the temporal lobe in primates including man with reference to speech. Brain and Language. 2, 396–419 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Stephan, H., Andy, O. J.: Quantitative comparative neuroanatomy of primates: an attempt at a phylogenetic interpretation. Ann. N. Y. Acad. Sci. 167, 370–387 (1969).

    Article  Google Scholar 

  • Suga, N.: Amplitude spectrum representation in the Doppler-shifted-CF processing area of the auditory cortex of the mustache bat. Science. 196, 67–67 (1977).

    Article  Google Scholar 

  • Suga, N., Jen, P. H. S.: Disproportionate tonotopic representation for processing CF- CM sonar signals in the mustache bat auditory cortex. Science. 194, 542–544 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Tunturi, A. R.: Further afferent connections of the acoustic cortex of the dog. Amer. J. Physiol. 144, 389–394(1945).

    Google Scholar 

  • Tunturi, A. R.: Physiological determination of the boundary of the acoustic area in the cerebral cortex of the dog. Amer. J. Physiol. 160, 395–401 (1950a).

    PubMed  CAS  Google Scholar 

  • Tunturi, A. R.: Physiological determination of the arrangement of the afferent connections to the middle ectosylvian area in the dog. Amer. J. Physiol. 162, 489–502 (1950b).

    PubMed  CAS  Google Scholar 

  • Tunturi, A. R.: A difference in the representation of auditory signals for the left and right ears in the isofrequency contours of the right middle ectosylvian cortex of the dog. Amer. J. Physiol. 168, 712–727 (1952).

    PubMed  CAS  Google Scholar 

  • Vogt, C.: Etude sur la myelinisation des hemispheres cerebraux. Paris: Steinheil, 1900.

    Google Scholar 

  • Vogt, C., Vogt, O.: Allgemeinere Ergebnisse unserer Hirnforschung. J. Psychol. Neurol. 25,279–461 (1919).

    Google Scholar 

  • Vogt, C., Vogt, O.: Die vergleichend-architektonische und die vergleichend-reizphysiologische Felderung der Grosshirnrinde unter besonderer Berücksichtigung der menschlichen. Die Naturwissenschaften. 14, 1190–1194 (1926).

    Article  Google Scholar 

  • von Economo, C.: The Cytoarchitectonics of the Human Cerebral Cortex. London: Oxford Medical Publications, 1929.

    Google Scholar 

  • von Economo, C., Koskinas, G. M.: Die Cytoarchitektonic der Hirnrinde der erwachsenen Menschen. Berlin: J. Springer, 1925, pp. 810.

    Google Scholar 

  • Wada, J. A.: Pre-language and fundamental asymmetry of the infant brain. Ann. N. Y. Acad. Sci. 299,370–379(1977).

    Article  PubMed  CAS  Google Scholar 

  • Wada, J. A., Rasmussen, T.: Intracarotid injection of sodium Amytal for the lateralization of cerebral speech dominance. J. Neurosurg. 17, 266–282 (1960).

    Article  Google Scholar 

  • Walzl, E. M.: Representation of the cochlea in the cerebral cortex. Laryngoscope. 57,778–787 (1947).

    Article  PubMed  CAS  Google Scholar 

  • Welker, W. I., Johnson, J. I., Jr., Pubols, B. H., Jr.: Some morphological and physiological characteristics of the somatic sensory system in raccoons. Amer. Zoologist. 4, 75–94 (1964).

    CAS  Google Scholar 

  • Whitfield, I. C.: Auditory cortex: tonal, temporal or topical? In: Physiology of the Auditory System. Sachs, M. B. (ed.). Baltimore: National Educational Consultants, 1971, pp. 289–298.

    Google Scholar 

  • Winkler, C., Potter, A.: An Anatomical Guide to Experimental Research on the Cat’s Brain. Amsterdam: Versluys, 1914.

    Google Scholar 

  • Witelson, S. F.: Early hemisphere specialization and interhemisphere plasticity; an empirical and theoretical review. In: Language Development and Neurological Theory. Segalowitz, S., Gruber, F. (eds.). New York: Academic Press, 1977.

    Google Scholar 

  • Woolsey, C. N.: “Second” somatic receiving areas in the cerebral cortex of cat, dog and monkey. Fed. Proc. 2, 55–56 (1943).

    Google Scholar 

  • Woolsey, C. N.: Organization of cortical auditory system: a review and a synthesis. In: Neural Mechanisms of the Auditory and Vestibular System. Rasmussen, G., Win die, W. (eds.). Springfield, Ill.: Charles C Thomas, 1960, pp. 165–180.

    Google Scholar 

  • Woolsey, C. N.: Organization of cortical auditory system. In: Sensory Communication. Rosenblith, W. A. (ed.). Cambridge, Mass.: The MIT Press, 1961, pp. 235–257.’

    Google Scholar 

  • Woolsey, C. N.: Tonotopic organization of the auditory cortex. In: Physiology of the Auditory System. Sachs, M. B. (ed.). Baltimore: National Educational Consultants, 1971.

    Google Scholar 

  • Woolsey, C. N., Fairman, D.: Contralateral, ipsilateral and bilateral representation of cutaneous receptors in somatic areas I and II of the cerebral cortex of pig, sheep and other mammals. Surgery. 19, 684–702 (1946).

    PubMed  CAS  Google Scholar 

  • Woolsey, C. N., Walzl, E. M.: Topical projection of nerve fibers from local regions of the cochlea to the cerebral cortex of the cat. Bull. Johns Hopkins Hosp. 71,315–344(1942).

    Google Scholar 

  • Woolsey, C. N., Walzl, E. M.: Topical projection of the cochlea to the cerebral cortex of the monkey. Amer. J. Med. Sci. 207, 685–686 (1944).

    Google Scholar 

  • Yeni-Komshian, G. H., Benson, D. A.: Anatomical study of cerebral asymmetry in the temporal lobe of humans, chimpanzees and Rhesus monkeys. Science. 192, 387–389 (1976)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag New York Inc.

About this paper

Cite this paper

Goldstein, M.H., Knight, P.L. (1980). Comparative Organization of Mammalian Auditory Cortex. In: Popper, A.N., Fay, R.R. (eds) Comparative Studies of Hearing in Vertebrates. Proceedings in Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8074-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8074-0_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8076-4

  • Online ISBN: 978-1-4613-8074-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics