Skip to main content

Part of the book series: Nato — Challenges of Modern Society ((NATS,volume 7))

Abstract

The atmospheric deposition of acidic species, i. e., sulfates and nitrates, has been known to occur for many decades. In recent years, concern about the ecological damage that acidic deposition may cause to streams and lake ecology, soils, forests, and materials has considerably increased (e. g., NRC, 1983; EPA, 1983; OTA, 1982). At the first meeting of the Convention on Long-Range Transboundary Air Pollution of the U.N. Economic Commission for Europe, held in Geneva in June 1983, Nordic countries proposed a 30 percent reduction in sulfur emissions to be implemented by 1993. In North America, the U.S./Canada Memorandum of Intent on Transboundary Air Pollution was set to define a common policy for the United States and Canada. Canada calls for a 50 percent reduction in SO2emission in both countries. In the United States, several reports acknowledge the contribution of sulfur dioxide (SO2) and nitrogen oxide (N0x) anthropogenic emissions to acidic deposition in northern America and the need for emission control (NRC, 1983; OSTP, 1983; OTA, 1982; EPA, 1983

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Behar, D., Czapski, G., Rabani, J., Dorfman, L. M., and Schwartz, H. A., 1970, The acid dissociation constant and decay kinetics of the perhydroxyl radical, J. Phys. Chem., 74: 3209 – 3213.

    Article  Google Scholar 

  • Burton, C. S., Liu, M. K., Roth, P. M., Seigneur, C., and Whitten, G. Z., 1983, Chemical transformation in plumes, Air Pollution Modeling and Its Application—II, C. de Wispelaere, ed., pp. 3–58, Plenum Press, New York, New York.

    Google Scholar 

  • Cotton, F. A., and Wilkinson, G., 1980, “Advanced Inorganic Chemistry,” 4th ed., John Wiley, New York, New York.

    Google Scholar 

  • Atkinson, R., and Lloyd A. C. 1981, Evaluation of kinetic and mechanistic data for modeling of photochemical smog, J. Phys Chem. Ref. Data, 10.

    Google Scholar 

  • Barrie, L. A., and Georgii, H. W., 1976, An experimental investigation of the absorption of sulfur dioxide by water drops containing heavy metal ions,Atmos. Environ., 10: 743 – 749.

    Article  Google Scholar 

  • Bassett, M. E., Gelbard, F., and Seinfeld, J. H., 1981, Mathematical model for multicomponent aerosol formation and growth in plumes, Atmos. Environ. 15: 2395 – 2406.

    Google Scholar 

  • Calvert, J. G., ed. 1983, “Acid Precipitation,” Ann Arbor Science Publishers, Ann Arbor, Michigan, in press.

    Google Scholar 

  • Chameides. W. L., and Davis, D.D., 1982, The free radical chemistry of cloud droplets and its impact upon the composition of rain, J. Geophys. Res., 83: 4863 – 4877.

    ADS  Google Scholar 

  • Damschen, 1982, private communication.

    Google Scholar 

  • Dasgupta, P.K. Decesare, K., and Ulbrey, J. C., 1980, Determination of atmospheric sulfur dioxide without tetrachlorrmercurate (11) and the mechanism of the Schiff reaction, Anal. Chem., 52: 1912 – 1922.

    Google Scholar 

  • Davis, D.D., 1983, private communication.

    Google Scholar 

  • EPA, 1983, “The Acidic Deposition Phenomenon and Its Effects Critical Assesment Review Papers.”EPA-600/800/8-83-016, U.S. Environmental Protection Agency, Washigton, D.C.

    Google Scholar 

  • Eigen, M., Kruse, W., Maass, G., and DeMager, L., 1964, Rate constants of protolytic reactions in aqueous solution, in “Progress in Reaction Kinetics,” G. Porter, ed., Macmillan, New York, New York.

    Google Scholar 

  • Erickson, R. E., Yates, L. M., Clark, R. L., and McEwan, D., 1977, The reaction of sulfur dioxide with ozone in water and its possible atmospheric significance, Atmos. Environ., 11: 813 – 817.

    Article  Google Scholar 

  • Farhataziz, and Ross, A. B., 1977, “Selected Specific Rates of Reactions of Transients From Water in Aqueous Sollution, III: Hydroxyl Radical and Perhydroxyl Radical and Their Radical Ions,” NSRDS-NBS 59, U.S. Department of Commerce, Washington, D.C.

    Google Scholar 

  • Fuchs, N. A., and Sutugin, A. G., 1971, High-dispersed aerosols, in Topics in Current Aerosol Research, G. M. Hidy and J. R. Brock, eds., Pergamon Press, New York, New York.

    Google Scholar 

  • Graedel, T. E., and Weschler, C. J., 1981, Chemistry within aqueous atmosperic aerosols and raindrops, Rev. Geophys. Space Phys., 19:505–539. =B

    Google Scholar 

  • Gurol, M. D., and Singer, P. C.,1982, Kinetics of ozone decomposition: a dynamic approach, Environ. Sci. Technol., 16:337–383.

    Google Scholar 

  • Harker, A. B., and Strauss, D.R., 1981, “Kinetics of the Heterogeneous Hydrolysis of Dinitrogen Pentoxide over the Temperature Range 214–263 K,” Rockwell International Science Center (Federal Aviation Administration, Publication FAA-EE-81-3).

    Google Scholar 

  • Hoffmann, M. R., and Jacob, D. J., 1983, Kinetics and mechanisms of the catalytic oxidation of dissolved sulfur dioxide in aqueous solution: an application to nighttime fog water chemistry, in “Acid Precipitation,” J. G. Calvert, ed., Ann Arbor Science Publishers, Ann Arbor, Michigan (in press).

    Google Scholar 

  • Holdren, M. W., Ward, G. F., Keigley, G. W., and Spicer, C.W., 1082, “Preliminary Investigation of the Effects of Peroxyacetylnitrate Precipitation Chemistry,” Battelle Pacific Northwest Laboratories, Seattle, Washington.

    Google Scholar 

  • Jacob, D. J., and Hoffmann, M. R., 1983, A dynamic model for the production of H+, NO -3 , and SO 2-4 in urban fog, J. Geophys. Research, in press.

    Google Scholar 

  • Johnstone, H. F., and Leppla, P. W., 1934, J. Am. Chem. Soc., 56: 2233.

    Article  Google Scholar 

  • Killus, J.P., and Whitten, G. Z., 1983, “A New Carbon-Bond Mechanism for Air Quality Simulation Modeling,” 81245, Systems Applications, Inc., San Rafael, California.

    Google Scholar 

  • Kosak-Channing, L. F., and Helz, G. R., 1983, Solubility of ozone in aqueous solutions of 0-0.6 M ionic strength at 5-30°C, Environ. Sci. Technol., 17: 145 – 149.

    Article  Google Scholar 

  • Lazrus, A. L.,Haagenson, P. L., Kok, G. L., Huebert, B. J., Kreitzberg, C. W., Likens, G. E., Mohnen, V. A., Wilson, W. E., and Winchester, J. W., 1983, Acidity in air and water in a case of warm frontal precipitation,Atmos. Environ., 17: 581 – 591.

    Article  Google Scholar 

  • Ledbury, W., and Blair, E. W., 1925, The partial formaldehyde vapor pressures of aqueous solution of formaldehyde, part II, J. Chem. Soc., 127: 2832 – 2839.

    Google Scholar 

  • Lee, Y.N., and Schwartz, S. W., 1981, Reaction kinetics of nitrogen dioxide with liquid water at low partial pressure, J. Phys. Chem., 85: 840 – 848.

    Article  Google Scholar 

  • Livingston, R. and Zeldes, H., 1966, “Paramagnetic Resonance Study of Liquids During Photolysis—Hydrogen Peroxide and Alcohols,” J. Chem. Phys., Vol. 44, pp. 1245 – 1259.

    Article  ADS  Google Scholar 

  • Martin, L. R., 1983, Kinetic studies of sulfite oxidation in aqueous solution, in “Acid Precipitation,” J. G. Calvert, ed., Ann Arbor Science Publishers, Ann Arbor Science Publishers, Ann Arbor, Michigan (in press).

    Google Scholar 

  • Martin L. R., and Damschen, D, E., 1981, Aqueous oxidation of sulfur dioxide by hydrogen peroxide at low pH, Atmos. Environ., 15: 1615 – 1621.

    Article  Google Scholar 

  • Martin, L. R., Damschen, D. E., and Judeikis, M. S., 1981, The reaction of nitrogen oxide with S0« in aqueous aerosols,Atmos. Environ., 15: 191 – 195.

    Article  Google Scholar 

  • Middleton, P., Kiang, C.S., and Mohnen, V.A., 1980, theoretical estimates of the relative importance of various urban sulfate aerosol production mechanisms, Atmos. Environ., 14:463–472.

    Google Scholar 

  • Mohnen, V. A., 1983, private communication.

    Google Scholar 

  • Morgan, 0. M., and Maahs, 0., 1931, Can.J. Res., 5: 162.

    Article  Google Scholar 

  • Morrison, R.A., and Chu, K. S., 1979, Measurement and calculation of the total pressure in equilibrium with highly concentrated sulfuric acid, Symposium on Environmental and Climatic Impact of Coal Utilization, 17–19 April, Williamsburg, Virginia.

    Google Scholar 

  • Munger, J. W., Jacob, D. J., Waldman, J. M. and Hoffman, M.R. 1983, Fogwater chemistry in an urban atmosphere, J. Geophys. Research, in press.

    Google Scholar 

  • NAPAP, 1982, “Annual Report 1982 to the President and Congress,”National Acid Precipitation Assessment Program, Washington, D.C.

    Google Scholar 

  • NASA, (1982), “Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling: Evaluation Number 5,” 82–57, Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, California.

    Google Scholar 

  • NRC, 1983, “Acid Deposition—Atmospheric Processes in Eastern North America,” National Research Council, National Academy Press, Washington, D.C.

    Google Scholar 

  • OSTP, 1983, “Press Advisory and Interim Report from 0STPfs Acid Rain Peer Review Panel,” Office of Science and Technology Policy, Executive Office of the President, Washington, D.C.

    Google Scholar 

  • OTA, 1982, “The Regional Implication of Transported Air Pollutant: An Assessment of Acidic Deposition and Ozone,” Office of Technology Assessment, Congress of the United States, Washington, D.C.

    Google Scholar 

  • Overton, J. H., Aneja, V.P., and Durham, J. L., 1979, Production of sulfate in rain and raindrops in polluted atmospheres, Atmos. Environ., 13:355–367,

    Google Scholar 

  • Perry, J. H., and Chilton, C. H., 1973, “Chemical Engineer’s Handbook,” Mc Graw-Hill, New York, New York.

    Google Scholar 

  • Peterson, T. W., and Seinfeld, H. J. 1980, Heteorogeneous condensation and chemical reaction in droplets—application to the heteorogeneous atmospheric oxidation of SO2, SAdv. Environ. Sci. Technol., 10: 125 – 180.

    Google Scholar 

  • Richards, L. W., 1983, Comments on the oxidation of NO2 to nitrate— day and night, Atmos. Environ., 17: 397 – 402.

    Article  Google Scholar 

  • Richards, L. W., Anderson, J. A., Blumenthal, D L., Duckhorn, S. L., and McDonald, J. A., 1983, “Characterization of Reactants, Reaction Mechanisms, and Reaction Products Leading to Existence of Acid Rain and Acid Aerosol Conditions in Southern California,” California Air Resources Board, Sacramento, California.

    Google Scholar 

  • Robinson, R. A., and Stokes, R. H., 1965, “Electrolyte Solutions”, Butterworthe, London, England.

    Google Scholar 

  • Roedel, W., 1979, Measurements of sulfuric acid saturation vapor pressure: Implications for aerosol formation by heteromolecular nucleation, J. Aerosol Sci., 10: 375.

    Article  Google Scholar 

  • Ross, A. B., and Neta, P., 1979, Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution, NSRDS-NBS 65, U.S. Department of Commerce, Washington, D.C.

    Google Scholar 

  • Saxena, P., Seigneur, C., and Peterson, T. W., 1983, Modeling of multiphase atmospheric aerosols, Atmos. Environ., 17: 1315 – 1329.

    Article  Google Scholar 

  • Seigneur, C., Saxena, P;, and Roth, P. M., 1982, Preliminary results of acid rain chemistry modeling, Proc. Atmospheric Deposition Specialty Conference, pp. 330–341, Air Pollution Control Association, Pittsburgh, Pennsylvania.

    Google Scholar 

  • Tang, I. N., 1980, On the equilibrium partial pressures of nitric acid and ammonia in the atmosphere, Atmos. Environ., 14: 819 – 828.

    Article  Google Scholar 

  • Yui, T., 1980, Tokyo Inst. Phys. Chem. Res. Bull., 19: T229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Seigneur, C., Saxena, P., Roth, P.M. (1985). Chemistry of Sulfate and Nitrate Formation. In: De Wispelaere, C. (eds) Air Pollution Modeling and Its Application IV. Nato — Challenges of Modern Society, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2455-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2455-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9491-7

  • Online ISBN: 978-1-4613-2455-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics