Skip to main content

Some Aspects of Charge Transfer in Biological Systems

  • Chapter
Modern Bioelectrochemistry

Abstract

The following modes of biological charge transfer are discussed: via solitons, as electronic conductance as hydrated proteins, via surface charge transfer complexes, and by protonic charge transfer complexes. Electron transfer involving the cytochromes is treated in the light of electrochemical measurements including voltammetry. A hypothesis for the lateral, surface conductance of biological membranes is proposed, based on electron donor-acceptor surface interactions giving rise to polaritons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Advances in Biological and Medical Physics (J. W. Lawrence, J. W. Gofman and T. L. Hayes, eds.), Academic, New York (1978).

    Google Scholar 

  2. T. J. Kistenmacher and L. G. Marzilli, “Chelate Metal Complexes of Purines Pyrimidines and Their Nucleosides: Metal-Ligand and Ligand-Ligand Interactions.” Jerusalem Symp. Quantum Chem. Biochem. 9 (1), 7–40 (1977).

    Google Scholar 

  3. L. E. Lyons, in Bioelectrochemistry, Proceedings U.S.-Australia Joint Seminar on Bioelec- trochemistry, Pasadena, 1979 ( H. Keyzer and F. Gutmann, eds.), Plenum Press, New York (1980).

    Google Scholar 

  4. E. Silinsh, A. I. Belkind, D. Balode, A. Biseniece, V. V. Grechov, L. Taure, M. V. Kurik, Ya. Vertsimaka, and I. Bok, “Photoelectric Properties, Energy Level Spectra and Photogeneration Mechanisms of Pentacene,” Phys. Status Solidi (a) 25, 339–347 (1974).

    Article  Google Scholar 

  5. E. Silinsh, Electronic States of Organic Molecular Crystals, Zinat., Academy of Science, Latvian SSSR, Riga, 1978.

    Google Scholar 

  6. R. L. McGreery et al., Brain Res. 73, 23 (1974).

    Article  Google Scholar 

  7. M. A. Kahn et al., Tex. Rep. Biol. Med. 31 665 (1973).

    Google Scholar 

  8. M. M. Lubran, Ann. Clinic. Lab. Sci. 4, 121 (1974).

    CAS  Google Scholar 

  9. V. Podany, A. Vachalkova, and L. Bahna, “Electrochemical Properties of Polycyclic Compounds Studied by the Polarographic Method in Anhydrous Systems. III. Polarographic Reduction Potentials of Carcinogenic Nitrogen Compounds in Dimethyl Sulfoxide,” Neoplasma 23, 617–622 (1976); cf. also L. Bahna, V. Podany, M. Benesova, A. Godal, and A. Vachalkova, “Carcinogenicity and Polarographic Behavior of dibenz (a, h) anthracene, dibenz (a, h) acridine, and dibenz (a, h) phenazine,” Neoplasma 25, 641–645 (1978); and A. Vachalkova, V. Podany, and L. Bahna, “Electrochemical Properties of Polycyclic Compounds Studied by the Polarographic Method in Anhydrous Systems. IV. Polarographic Study of Carcinogenic and Noncarcinogenic Hydrocarbons in Ethylene Glycol Monomethyl Ether,” Neoplasma 24, 565–571 (1977); and V. Podany, E. Rezabkova, and L. Bahna, “Electrochemical Properties of Polycyclic Compounds Studied by the Polarographic Method in Anhydrous Systems. V. Oxidation Potentials of Car¬cinogenic Hydrocarbons in Acetonitrile,” Neoplasma 25, 57–65 (1978).

    CAS  Google Scholar 

  10. A. S. Davydov, “Solitons in Molecular Systems,” Phys. Scr. 20, 387–394 (1979); A. S. Davydov, “Solitons in Bioenergetics, and the Mechanism of Muscle Contraction,” Int. J. Quantum Chem. 16, 5–17 (1979); cf. also J. M. Hyman, D. W. McLaughlin, and A. C. Scott, Physica 3D, 23 (1981); A. C. Scott, “Dynamics of Davydov Solitons,” Phys. Rev. 26A, 578 (1982); A. C. Scott, “The Vibrational Structure of Davydov Solitons,” Phys. Scr. 25, 651–658 (1982).

    Article  CAS  Google Scholar 

  11. Nan-Ming Chao and S. White, “Orientational Waves in Cell Membranes,” Mol. Cryst. Liq. Cryst. 88 (1–4), 127 (1982).

    Article  CAS  Google Scholar 

  12. Y. Kashimori, T. Kikuchi, and K. Nishimoto, “The Solitonic Mechanism for Proton Transport in a Hydrogen Bonded Chian,” J. Chem. Phys. 77, 1904-1907 (1982); cf. also T. Kikuchi and K. Nishimoto, “Theoretical Studies of Hemoproteins, I. Mathematical Description of the Allosteric Effect,” Int. J. Quantum Chem. 15, 379–387 (1979).

    Article  CAS  Google Scholar 

  13. R. Pethig and A. Szent-Gyorgyi, in Bioelectrochemistry, Proceedings of the U.S.-Australia Joint Seminar on Bioelectrochemistry, 1979 ( H. Keyzer and F. Gutmann, eds.), Plenum Press, New York (1980), p. 227–252.

    Google Scholar 

  14. D. L. Worcester, “Structural Origins of Diamagnetic Anisotropy in Proteins,” Proc. Natl. Acad. Sci., U.S.A. 75, 5475 (1978).

    Article  CAS  Google Scholar 

  15. B. Y. Tong, J. Non-Cryst. Solids 4, 455 (1978).

    Article  Google Scholar 

  16. J. Altieri and J. E. Kirzan, “Self-Consistent Band Theoretic Models of DNA,” J. Biol. Phys. 3, 103–110 (1975).

    Article  CAS  Google Scholar 

  17. F. Gutmann and L. E. Lyons, Organic Semiconductors, Wiley, New York, 1967; F. Gutmann, H. Keyzer, and L. E. Lyons, Organic Semiconductors, Part B, Krieger Publ. Co., Malabar, Florida (1983).

    Google Scholar 

  18. P. S. B. Digby, Proc. R. Soc. London Ser. B 161, 502 (1965); Proc. Linn. Soc. London 178, 129 (1967); Symp. Zool. Soc. London 19, 159 (1967).

    Article  Google Scholar 

  19. S. Bone, J. Eden, and R. Pethig, “Electrical Properties of Proteins as a Function of Hydration and Sodium Chloride Content,” Int. J. Quantum Chem. Quantum Biol. Symp. 1981 8, 307–316.

    Article  CAS  Google Scholar 

  20. Y. Nakahara et al., Chem. Lett. 1979, 877.

    Google Scholar 

  21. Y. Nakahara et. al., Chem. Phys. Lett. 47, 251 (1977).

    Article  CAS  Google Scholar 

  22. C. M. Dobson, N. J. Hoyle, C. F. Geraldes, P. E. Wright, R. J. P. Williams, M. Bruschi, and J. LeGall, “Outline Sturcture of Cytochrome c 3 and its Properties,” Nature (London) 249, 524–429 (1974); K. Onon et al., see Ref. 25; K. Kimura et al., Biochem. Biophys. Acta 567, 96 (1979).

    Article  Google Scholar 

  23. U. Ichimura et al., Chem. Lett. 1982 (1), 19; cf. also F. I. Adamosov, G. B. Postnikova, V. K. Sadydov, and M. V. A. Volkenstein, “Study of Electron Transport in Hemoproteins. II. Relation to the Rate of Reduction of Ferricytochrome c by Oxmyoglobin to the pH,” Soc. Mol. Biol. (Moscow), Molekylar Biologyia 11, 441 (1977).

    Google Scholar 

  24. K. Kimura, Y. Nakahara, T. Yagi, and H. Inokuchi, “Electrical Conductivity of Hemoprotein in the Solid Phase: Anhydrous Cytochrome c3 Film,” J. Chem. Phys. 70, 3317–3323.

    Google Scholar 

  25. K. Ono, K. Kimura, T. Yagi, and H. Inokuchi, “Mössbauer Study of Cytochrome c3,” J. Chem. Phys. 63, 1640–1642 (1975).

    Article  CAS  Google Scholar 

  26. Y. Nakahara, K. Kimura, and H. Inokuchi, “Electrical Conductivity of an Anhydrous Cytochrome c3 Film as a Function of Temperature and Ambient Pressure,” Chem. Phys. Lett. 73 (1), 31 (1980).

    Article  CAS  Google Scholar 

  27. Y. Nakahara, K. Kimura, H. Inokuchi, and T. Yagi, “Electrical Conductivity of Solid State Proteins: Simple Protein Cytochrome c3 as Anhydrous Film,” Chem. Lett. 1979, 877–880 (1979); cf. also K. Kimura, Y. Nakahara, T. Yagi, and H. Inokuchi, “Electrical Conduction of Hemoprotein in the Solid Phase: Anhydrous Cytochrome c3 Film,” J. Chem. Phys. 80, 3317–3323 (1979).

    Google Scholar 

  28. D. D. Eley and D. I. Spivey, Trans. Faraday Soc. 56, 1432 (1960).

    Article  CAS  Google Scholar 

  29. P. Taylor, Disc. Faraday Soc. 27, 239 (1959).

    Google Scholar 

  30. Y. Nakahara, K. Kimura, and H. Inokuchi, “Electrical Conductivity of Cytochrome c Anhydrous Film,” Chem. Phys. Lett. 47, 251 (1977).

    Article  CAS  Google Scholar 

  31. K. Niki, T. Yagi, H. Inokuchi, and K. Kimura, J. Electrochem. Soc. 124, 1889 (1970).

    Article  Google Scholar 

  32. M. J. Eddowes, H. A. O. Hill, and K. Uosaki, “Electrochemistry of Cytochrome c. Comparison of the Electron Transfer at a Surface-Modified Gold Electrode with that to Cytochrome Oxidase,” J. Am. Chem. Soc. 101, 7113–7114 (1979); cf. also A. E. G. Cass, M. J. Eddowes, H. A. O. Hill, K. Uosaki, R. C. Hammond, I. J. Higgins, and E. Plotkin, Nature (London) 285, 673 (1980).

    Article  CAS  Google Scholar 

  33. S. Ferguson-Miller, D. L. Brautigan, and E. Margoliash, J. Biol. Chem. 253, 149 (1979).

    Google Scholar 

  34. S. Takemori, K. Wada, K. Ando, M. Hosokawa, I. Sezuku, and K. Okunuki, J. Biochem. (Tokyo) 52, 28 (1962).

    CAS  Google Scholar 

  35. B. S. Mochan, W. B. Elliott, and P. Nicholls, “Patterns of Cytochrome Oxidase Inhibition by Polycations,” J. Bioenerg. 4, 329–345 (1973).

    Article  CAS  Google Scholar 

  36. C. H. A. Seiter, R. Margalit, and R. A. Perreault, Biochem. Biophys. Res. Commun. 68, 807 (1976)

    Article  Google Scholar 

  37. M. J. Eddowes and H. A. O. Hill, “Electrochemistry of Horse Heart Cytochrome c,” J. Am. Chem. Soc. 101, 4461–4464 (1979).

    Article  CAS  Google Scholar 

  38. V. Marecek, Z. Samec, and J. Weber, “The Dependence of the Electrochemical Charge- Transfer Coefficient on the Electrode Potential. Study of the Hexacyanoferrate (III) Hexacyanferrate (IV) Redox Reaction on Polycrystalline Gold Electrode in Potassium Fluoride Solutions,” J. Electroanal. Chem. Interfacial Electrochem. 94, 169–185 (1978); cf. also J. Weber, Z. Samec, and V. Marecek, “The Effect of Anion Adsorption on the Kinetics of the Iron (3+)/Iron (2+) Reaction on Platinum and Gold Electrodes in Perchloric Acid,” J. Electroanal. Chem. Interfacial Electrochem. 89, 271–288 (1978).

    Google Scholar 

  39. P. R. C. Gascoyne and R. Pethig, “Experimental and Theoretical Aspects of Hydration Isotherms for Biomolecules,” J. Chem. Soc. Faraday Trans. I, 73, 171–180 (1977); S. Bone, P. R. C. Gascoyne, and R. Pethig, “Dielectric Properties of Hydrated Proteins at 9.9 GHz,” J. Chem. Soc. Faraday Trans. I, 73, 1605–1611 (1977).

    Article  CAS  Google Scholar 

  40. D. Spivey, Discuss. Faraday Soc. 27, 239 (1959).

    Google Scholar 

  41. P. M. Conny, J. E. McGinness, and E. Armour, Proc. Int. Pigm. Cell Conf. 9th, Pigm. Cell 1976 (2), 321.

    Google Scholar 

  42. F. W. Cope, “Inversion of Emulsions of Aggregated Electrons as a Possible Mechanism for Electrical Switching in Wet Melanin and in Amorphous Inorganic Semiconductors. A Manifestation of Cooperative Electron Interactions,” Physiol. Chem. Phys. 9, 543–546 (1977).

    Google Scholar 

  43. E. V. Gan, H. F. Haberman, and I. A. Menon, “Electron Transfer Properties of Melanin,” Arch. Biochem. Biophys. 173, 666–672 (1976).

    Article  CAS  Google Scholar 

  44. P. Crippa, V. Christofoletti, and N. Romeo, “A Band Model for Melanin Deduced from Optical Absorption and Photoconductivity Experiments,” Biochim. Biophys. Acta. 538(1), 164–170 (1978); cf. also P. Baraldi, R. Capelletti, P. R. Crippa, and N. Romeo, “Electrical Characteristics and Electret Behavior of Melanin,” J. Electrochem. Soc. 126, 1207–1212 (1979).

    CAS  Google Scholar 

  45. F. Gutmann and H. Keyzer, “Electrical Conduction in Chlorpromazine,” Nature (London) 205, 1102 (1965).

    Article  CAS  Google Scholar 

  46. Comprehensive Treatise of Electrochemistry, Vol. 1, The Double Layers (J. O’M. Bockris, B. E. Conway, and E. Yeager, eds.), Plenum Press, New York (1980); Sh. U. M. Khan, Mod. Aspects Electrochem. 15, 305 (1983); M. D. Levi, B. B. Damaskin, and I. A. Bagotskaya, Itogi Nauki Tekh. Ser. Elektrokhim. 19, 47 (1983); A. Hamelin, T. Vitanov, E. S. Sevastyanov, and A. Popov, J. Electroanal. Chem. Interfacial Electrochem. 145(2), 225 (1983); B. E. Conway, “The Solid-Electrolyte Interface,” Nato Conf Ser., Ser. 6 (5), 497 (1983); G. A. Martynov and R. R. Salem, “Electronic Capacitor at a Metal/Electrolyte Interface,” Elektrokhimiya19, 1060–1070 (1983); and G. A. Martynov and R. R. Salem, Lecture Notes in Chemistry, Vol. 33: “Electrical Double Layer at a Metal-Dilute Electrolyte Solution Interface,” Springer-Verlag, Berlin (1983); also B. W. Ninham, “Surface Forces—The Last 30 Ångstrom,” Pure Appl. Chem. 53, 2135–2147 (1981).

    Google Scholar 

  47. T. L. Einstein, “Changes in Density of States Caused by Chemisorption,” Phys. Rev. B 12, 1262–1274 (1975).

    Article  CAS  Google Scholar 

  48. S. G. Gagarin and Yu. A. Kolbanovskii, Kinet. Katal. 19, 1463 (1980).

    Google Scholar 

  49. T. B. Grimley, “Electronic Structure of Adsorbed Atoms and Molecules,” J. Vac. Sci. Technol. 8, 31–38 (1971).

    Article  CAS  Google Scholar 

  50. J. M. Turlet, J. Bernard, and P. Kottis, “Fluorescence from (001) Surface and Subsurface Excitons in Anthracene Crystal: Some Experimental Evidences,” J. Lumin. 18–19, 47–50 (1979); cf. also R. T. Holm and E. D. Palik, “Internal Reflection Spectroscopy Studies of Thin Films and Surfaces,” Opt. Eng. 17, 512–524 (1978); see also Phys. Rev. B 17, 2173 (1978).

    Article  Google Scholar 

  51. R. Del Sole and E. Tossatti, Solid State Commun. 22, 307 (1970).

    Article  Google Scholar 

  52. There is a huge body of literature on this topic, e.g., Comprehensive Treatise of Electrochemistry, Vols. 2 and 7 (J. O’M. Bockris, B. E. Conway, E. Yeager, R. E. White, and S. U. M. Khan, eds.), Plenum Press, New York (1981 and 1983); Proc. Symp. on Electrocatalysis (W. E. O. Grady, P. N. Ross and F. G. Will, eds.), Electrochem. Soc., Princeton, New Jersey (1982); K. Tamara and M. Ichinawa, Catalysis by Electron Donor-Acceptor Complexes, Kodansha, Tokyo (1975); J. O’M. Bockris and S. U. M. Khan, Quantum Electrochemistry, Plenum Press, New York (1979).

    Google Scholar 

  53. H. Keyzer et al., in “4th Internatl. Symp. on Phenothiazines and Related Drugs” (H. Eckert, I. S. Forrest and E. Usdin, eds.), Elsevier, Amsterdam (1980).

    Google Scholar 

  54. J. P. Farges and F. Gutmann, unpublished.

    Google Scholar 

  55. H. J. Frank et al., Ber. Bunsen Ges. Phys. Chem. 80, 547 (1970); M. Gratzel, A. Henglein, and E. Janata, “Mechanism of Electron Transfer from ρaq to Acceptors in Micelles,” Ber. Bunsen Ges. Phys. Chem. 79, 475–480 (1975); cf. also M. Graetzel, J. J. Kozak, and J. K. Thomas, “Electron Reactions and Electron Transfer Reactions Catalyzed by Micellar Systems,” J. Chem. Phys. 62, 1632–1640 (1975).

    Google Scholar 

  56. C. A. Bunton, Progr. Solid State Chem. 8, 167 (1973).

    Article  Google Scholar 

  57. V. T. Gorshkov et al., Zh. Fiz. Khim. 51, 2680 (1977).

    CAS  Google Scholar 

  58. A. M. Kolber, “Mono- and Divalent Competitive Adsorption to a Charged Membrane in a Closed System: A Comparative Study,” J. Theor. Biol 94 (3), 633–649 (1982).

    Article  CAS  Google Scholar 

  59. For example, R. A. Klein, NATO Adv. Sei. Inst. Ser.; Ser. A 59, 301–317 (1983); cf. also “The Movement of Molecules Across Membranes,” Q. Rev. Biophys., 15, 667 ff. (1982); H. T. Tien, Bilayer Lipid Membranes, Marcel Dekker, New York (1974); C. F. Fox, “The Structure of Cell Membranes,” Sci. Am. 226 (2), 30 (1972); R. A. Capaldi, “A Dynamical Model of Cell Membranes,” Sci. Am. 230 (3), 26 (1974); see also the specialized journal, J. Membrane Biol.; B. Lutenberg and L. Van Alphen, “Molecular Architecture and Functioning of the Outer Membrane of Escherichia Coli and Other Gram-Negative Bacteria,” Biochim. Biophys. Acta. 737, 51–115 (1983); G. Cevc and D. Marsh, “Properties of the Electrical Double Layer near the Interface Between a Charged Bilayer Membrane and Electrolyte Solution: Experiment vs. Theory,” J. Phys. Chem. 87, 376–379 (1983).

    Google Scholar 

  60. See Ref. 18, p. 79 ff.

    Google Scholar 

  61. D. L. Knopf, M. D. Lupa, J. H. Caldwell, and F. M. Harold, Science 220, 1385 (1983); I. F. Jaffe and R. Nucnelli, J. Cell Biol. 68, 614 (1974).

    Article  Google Scholar 

  62. S. Hino and H. Inokuchi, “Electron Escape Depths of Organic Solids. II. The Energy Dependence of Naphthacene and Perylene Films,” J. Chem. Phys. 70, 1142–1146 (1979).

    Article  CAS  Google Scholar 

  63. N. Sato, H. Inokuchi, K. Seki, J. Aoki, and S. Iwashima, “Ultraviolet Photoemission Spectroscopic Studies of Six Nanocyclic Aromatic Hydrocarbons in the Gaseous and Solid States,” J. Chem. Soc. Faraday Trans. 2 78, 1929–1936 (1982); N. Sato, K. Seki, and H. Inokuchi, “Polarization Energies of Organic Solids Determined by Ultraviolet Photoelectron Spectroscopy,” J. Chem. Soc. Faraday Trans., 2 77, 1621-1633 (1981); N. Sato, K. Seki, and H. Inokuchi, “Ultraviolet Photoelectron Spectra of Tetrahalo-P-Benzo- quinones and Hexahalobenzenes in the Solid State,” J. Chem. Soc. Faraday Trans., 2 77, 47–54 (1981); I. Ikemoto, Y. Sato, T. Sugano, N. Kosugi, H. Kuroda, K. Ishii, N. Sato, K. Seki, and H. Inokuchi, “Photoelectron Spectroscopy of the Molecule and Solid of 11,11,12,12-Tetracyanonaphthoquinodimethane (TNAP),” Chem. Phys. Lett. 61, 50–53 (1979); K. Seki, S. Hashimoto, N. Sato, Y. Harada, K. Ishii, H. Inokuchi, and J. Kanbe, “Vacuum-Ultraviolet Photoelectron Spectroscopy of Hexatricontane (N-C36-H74) Polycrystal: A Model Compound of Polyethylene,” J. Chem. Phys. 66, 3644–3649 (1977).

    Google Scholar 

  64. J. N. Weinstein, R. Blumental, J. Van Renswoude, C. Kempf, and R. D. Klausner, “Charge Clusters and the Orientation of Membrane Proteins,” J. Membr. Biol. 66, 203–212 (1982); C. Kempf, R. D. Klausner, J. N. Weinstein, J. Van Renswoude, M. Pincus, and R. Blumenthal, J. Biol Chem. 257 (5), 2469 (1982).

    Article  CAS  Google Scholar 

  65. G. I. Distler and V. G. Obronov, “Photoelectret Mechanism of Long Range Transmission of Structural Information,” Nature (London) 224, 261–262 (1969); G. I. Distler and V. G. Obronov, “Induced Polarization Structure in Interfacial Epitaxial Layers,” Naturwissenschaften 57, 495 (1970); cf. also G. I. Distler, J. Crystal Growth 9, 76 (1971).

    Article  CAS  Google Scholar 

  66. D. C. Reynolds and T. C. Collins, Excitations: Their Properties and Uses, Academic, New York (1981); G. Nicklus and I. Prigogine, Self Organization in Non-Equilibrium Systems, Wiley, New York (1977); A. S. Davydov, Solid State Theory, Nauka, Moscow (1976); A. S. Davydov, Biology and Quantum Mechanics, Pergamon Press, Oxford (1982); A. S. Davydov, Phys. Scr. 20, 387 (1979); H. Matsumoto, M. Tachiki, and H. Umezava, Thermo-field Dynamics and Condensed States, Elsevier, North Holland, Amsterdam (1982).

    Google Scholar 

  67. A. S. Davydov, A. A. Eremko, and A. A. Zegeenko, Ukr. Fiz. Zhurn. 23, 983 (1978); A. S. Davydov and A. D. Suprun, Configurational Changes and Optical Properties of Alpha- Spiral Protein Molecules, Inst, of Theor. Phys. Kiev, Puhl ITF-73-1-P, (1973); see also A. S. Davydov, Ref. 73.

    CAS  Google Scholar 

  68. E. Del Guidice, S. Doglia, M. Milani, and G. Vitiello, A Quantum Field Theoretical Approach to the Collective Behavior of Biological Systems, preprint of paper read at the Conference on Non-Linear Electrodynamics in Biological Systems, Loma Linda, California 1983.

    Google Scholar 

  69. S. G. Christov, J. Res. Inst. Catal., Hokkaido Univ. 24, 27 (1976); G. Saito and Y. Matsunaga, Bull. Chem. Soc. Jpn 46, 1609 (1973); 45, 963 (1972); 47, 2873 (1974); 47, 1020 (1974); 46, 714 (1973); Y. Matsunaga, ibid. 48, 37 (1975); Y. Matsunaga and R. Osawa, ibid. 47, 1589 (1974); J. M. Dumai et al, J. Chem. Phys., Phys-Chem. Biol. 72, 1185 (1975); H. Ratajcak et al., Chem. Phys. 17, 197 (1976); A. Kofler, A. Electrochem. 50, 200 (1974); G. I. Krishtalik et al., J. Res. Inst. Catal., Hokkaido Univ. 22, 101 (1974); R. R. Dogonadze and A. M. Kuznetsov, ibid 26, 15 (1978); I. Yu. Martynov et al., Russ. Chem. Rev. 46, 1 (1977); W. Klopffer, Adv. Photochem. 10, 311 (1977).

    Google Scholar 

  70. M. J. Rice and W. L. Roth, J Solid State Chem. 4, 294 (1972); L. J. Gagliardi, see Ref. 81.

    Google Scholar 

  71. J. Koziol and P. Tomasik, Bull. Acad. Pol. Sci. Ser. Sei. Chim. 25, 689 (1977).

    CAS  Google Scholar 

  72. K. Morokuma, Acc. Chem. Res. 10, 294 (1977).

    Article  CAS  Google Scholar 

  73. J. L. Beauchamp, Ann. Rev. Phys. Chem. 22, 527 (1971); also in Interactions between Ions and Molecules (P. Ausloos, ed.), Plenum Press, New York (1975), p. 413; N. Hartmann et al., Top. Curr. Chem. 43, 57 (1973).

    Google Scholar 

  74. J. H. Bayless, L. Friedmann, F. B. Cook, and H. Shechter, “The Effect of Solvent of the Course of the Bamford-Stevens Reaction,” J. Am. Chem. Soc. 90, 531 (1968).

    Article  CAS  Google Scholar 

  75. K. Kalnins et al., Dokl. Akad. Nauk. SSSR 244, 400 (1979).

    CAS  Google Scholar 

  76. E. M. Arnett and E. J. Mitchell, “Hydrogen Bonding. VI. A Dramatic Difference Between Proton Transfer and Hydrogen Bonding,” J. Am. Chem. Soc. 93, 4052–4053 (1971).

    Article  CAS  Google Scholar 

  77. T. Erdey-Gruz and S. Lengyel, Mod. Aspects of Electrochem. 12, 1 (1977); J. E. Crooks and B. H. Robinson, in Proton Transfer, Faraday Symp. Chem. Soc. London, No. 10 (1975), p. 29; C. E. Bannister et al., ibid., p. 78.

    Google Scholar 

  78. J. Nishijo, Bull. Chem. Soc. Jpn 47, 1539 (1974).

    Article  CAS  Google Scholar 

  79. P. W. Anderson et al., Phil. Mag. 25, 1 (1972); J. Tauc, Phys. Today, Oct. 1976, 27; S. G. Christov, Contemp. Phys. 13, 199 (1972); Phys. Status Solidi 7, 371 (1971); Croatica Chim. Acta. 44, 67 (1972); G. Gusman and R. Deltowi, Solid State Commun. 15, 1587 (1974); R. R. Dogonadze and A. M. Kuznetsov, J. Res. Inst. Catalysis, Hokkaido Univ. 22, 93 (1974); J. H. Bush and J. R. De la Vega, “Symmetry and Tunneling in Proton Transfer Reactions, Proton Exchange between Methyloxonium Ion and Methylalcohol, Methylalcohol and Methoxide Ion, Hydronium Ion and Water, and Water and Hydroxyl Ion,” J. Am. Chem. Soc. 90–99, 2397–2406 (1977).

    Google Scholar 

  80. T. Izumida, T. Ichikawa, and H. Yoshida, “Effect of Matrix Polarity on the Charge Trans¬fer Band of the Benzyl Radical-Halide Complex,” J. Chem. Phys. 83, 373–375 (1979).

    Article  CAS  Google Scholar 

  81. L. J. Gagliardi, “Dielectric Friction and Protonic Mobility,” J. Chem. Phys. 58, 2193–2194 (1973).

    Article  CAS  Google Scholar 

  82. G. N. Felix and P. C. Huyskens, “Influence of the Formation of Ions on the Viscosity of Phenol-Amine Mixtures,” J. Phys. Chem. 79, 2316–2322 (1975).

    Article  CAS  Google Scholar 

  83. W. Klopffer, Adv. Photochem. 10, 311 (1977); I. Yu. Martynov et al., Russ. Chem. Revs. 46, 1 (1977).

    Google Scholar 

  84. Yu. I. Martinov et al., Khim. Vys. Energ. 11, 443 (1977).

    Google Scholar 

  85. I. Deperasinska and J. Prochorov, Adv. Molec. Relax. Interact. Process 11, 51 (1977).

    Article  CAS  Google Scholar 

  86. V. P. Klindukhov and T. G. Meister, “Determination of the Intermolecular Hydrogen Bond Energy of Some Systems in Ground and Primary Excited Electron States,” Molekulyar Spektroskopya (1977), 12–41; cf. also Adv. Molec. Relax. Interact. Processes 13, 107 (1978).

    Google Scholar 

  87. F. Babler and A. Von Zelewski, Helv. Chim. Acta 60, 2723 (1977); F. Gutmann and H. Keyzer, Electrochim. Acta 13, 693 (1968); M. A. Slifkin, Charge Transfer Interactions of Biomolecules, Academic Press, London (1971), p. 251.

    Article  Google Scholar 

  88. E. A. Chandross and J. Ferguson, J. Chem. Phys. 47, 2557 (1967); H. A. Staab and V. Schwendemann. Ferguson, J. Chem. Phys. 47, 2557 (1967); H. A. Staab and V. Schwendemann, “Charge Transfer Interactions 17: Cyclophane Quinhydrone—A Donor- Acceptor Cyclophane with Extremely Short Transannular Distance,” Angew. Chem. 90, 805–807 (1978); H. A. Staab and V. Zapf, “Charge Transfer Interactions 18: Indirect Donor-Acceptor Interactions in Quinhydrones of a 4-layered 2,2 Parachyclphane,” Angew. Chem. 90, 807–808 (1978).

    Article  CAS  Google Scholar 

  89. W. W. Robertson, A. D. King, Jr., and O. E. Weigand, Jr., “Determination of Excited State Dipole Moments of Anthracene,” J. Chem. Phys. 35, 464–466 (1961); N. Tyutyuckov et al, Theor. Chim. Acta (Berlin) 20, 385 (1971).

    Article  CAS  Google Scholar 

  90. J. K. Roy and D. G. Whitten, J. Am. Chem. Soc. 95, 7162 (1972); D. V. O’Connor and W. R. Ware, ibid. 101, 121 (1979).

    Article  Google Scholar 

  91. M. Gordon and W. R. Ware, The Exciplex, Academic, New York (1975); Molecular Association (R. Foster, ed.), Academic, New York (1979), p. 2; P. Fröhlich and E. L. Wehry, “The Study of Excited State Complexes (Exciplexes),” in Modern Fluorescence Spectroscopy (E. L. Wehry, ed.), Plenum Press, New York (1976), Vol. 2, p. 319.

    Google Scholar 

  92. C. Bagyimka et al., Acta Biol Acad. Sei. Hung. 32 (3–4), 311 (1981).

    Google Scholar 

  93. H. T. Tien, “Photoelectric Bilayer Lipid Membrane: A Model for the Thylakoid Membrane,” Brookhaven Natl. Lab. Rep. BNL-50530 (1977); cf. also H. T. Tien, Bioelectrochem. Bioenerget. 5, 318 (1978).

    Google Scholar 

  94. A. B. Ershler, A. M. Funtikov, and I. M. Levinson, Elektrokhimiya, 18 (11), 1577 (1982).

    CAS  Google Scholar 

  95. G. Varo and L. Keszthely, “Photoelectric Signals from Dried Membranes of Halobac- terium Halobium,” Biophys. J. 43 (1), 47–51 (1983).

    Article  CAS  Google Scholar 

  96. V. E. Khutorskii, “Water Structure in the Transmembrane Gramicidin A Channel,” Bio-org. Khim. 9 (6), 846–848 (1983).

    CAS  Google Scholar 

  97. M. L. Ahrens, “Electrostatic Control by Lipids upon the Membrane-Bound Sodium- Potassium ATPase. II. The Influence of Surface Potential upon the Activating Ion Equilibria,” Biochim. Biophys. Acta 732 (1), 1–10 (1983).

    Article  CAS  Google Scholar 

  98. K. Niki, T. Yagi, H. Inokuchi, and K. Kimura, “Electrode Reactions of Cytochrome c3 of Desulfovibrio vulgaris, Miyazaki,” J. Electrochem. Soc. 124, 1889–1891 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Gutmann, F. (1986). Some Aspects of Charge Transfer in Biological Systems. In: Gutmann, F., Keyzer, H. (eds) Modern Bioelectrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2105-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2105-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9246-3

  • Online ISBN: 978-1-4613-2105-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics