Skip to main content

Faith and Foraging: A Critique of the “Paradigm Argument from Design”

  • Chapter
Foraging Behavior

Abstract

The idea that organisms are exquisitely designed to fit their environment is a legacy from a static and teleological world view that has a lengthy history in western thought (see Pirlot & Bernier 1973, Bernier & Pirlot 1977, Lewontin 1980, Krimbas 1984). It is a tradition that includes Aristotle, the Stoics, St. Thomas Aquinas, and the Natural Theologians. For these writers optimal design was evidence for the existence of various forms of an intelligent creator. This argument for the existence of a creator has become known as the “argument from design.” In its modern guise, the idea of design can be found in the Darwinian concept of adaptation. Darwin rejected God as an explanation of an organism-environment fit but accepted that such a fit existed (see Ospovat 1981).1 Drawing implicitly from Hobbes and Adam Smith, and explicitly from the Natural Theologians and Malthus, he proposed natural selection as a mechanism to explain this fit. In this manner, mechanism was wedded to teleology and Aristotle’s final causes were transformed into today’s “ultimate” or evolutionary causes.2 Mayr (1982, p. 521) asserts that this legitimization of “why questions” was the most important departure in Darwin’s methodology.

“The tradition of all the dead generations weighs like a nightmare on the brain of the living.” (Marx 1934, p.10)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abe, M., and Iriki, T. 1978. Effects of diet on the protozoa populations in continuous culture of rumen contents. British Journal of Nutrition, 39: 255–261.

    PubMed  CAS  Google Scholar 

  • Abrams, P.A. 1982. Functional responses of optimal foragers. American Naturalist, 120: 382–390.

    Google Scholar 

  • Abrams, P.A. 1984. Foraging time optimization and interactions in food webs. American Naturalist, 124: 80–96.

    Google Scholar 

  • Abramsky, Z. 1983. Experiments on seed predation by rodents and ants in the Israeli desert. Oecologia, 57: 328–332.

    Google Scholar 

  • Ahmad, S. 1983. Mixed-function oxidase activity in a generalist herbivore in relation to its biology, food plans and feeding history. Ecology, 64: 235–243.

    CAS  Google Scholar 

  • Alberch, P. 1980. Ontogenesis and morphological diversification. American Zoologist, 20: 653–667.

    Google Scholar 

  • Alberch, P. 1982. Developmental constraints in evolutionary processes. In: Evolution and Development (ed. by J.T. Bonner ), pp. 313–332. Springer-Verlag, Berlin, West Germany.

    Google Scholar 

  • Alexander, R. McN. 1980. Optimum walking techniques for quadrupeds are bipeds. Journal of Zoology, London, 192: 97–117.

    Google Scholar 

  • Alexander, R. McN. 1982. Optima for Animals. Edward Arnold, London, U.K.

    Google Scholar 

  • Al-Jaborae, F.F. 1979. The Influence of Diet on the Gut Morphology of the Starling (Sturnus vulgaris L. 1758 ). Ph.D. thesis, Oxford University.

    Google Scholar 

  • Allen, P.L. 1983. Feeding behaviour of Asterias rubens (L.) on soft bottom bivalves: a study in selective predation. Journal of Experimental Marine Biology and Ecology, 70: 79–90.

    CAS  Google Scholar 

  • Alphen, J.J.M. van, and Galis, F. 1983. Patch time allocation and parasitization efficiency of Asobara tabida, a larval parasitoid of Drosphila. Journal of Animal Ecology, 52: 937–952.

    Google Scholar 

  • Altman, S.A. 1984. What is the dual of the energy-maximization problem? American Naturalist, 123: 433–441.

    Google Scholar 

  • Altman, S.A., and Wagner, S.S. 1978. A general model of optimal diet. Recent Advances in Primatology, 1: 407–414.

    Google Scholar 

  • Anderson, O. 1984. Optimal foraging by largemouth bass in structured environments. Ecology, 65: 851–861.

    Google Scholar 

  • Andersson, M. 1978. Optimal foraging area: Size and allocation of search effort. Theoretical Population Biology, 13: 397–409.

    PubMed  CAS  Google Scholar 

  • Andersson, M. 1981a. Central place foraging in the whinchat, Saxicola rubetra. Ecology, 62: 538–544.

    Google Scholar 

  • Andersson, M. 1981b. On optimal predator search. Theoretical Population Biology, 19: 58–86.

    Google Scholar 

  • Aronson, R.B., and Givnish, T.J. 1983. Optimal central-place foragers: A comparison with null hypotheses. Ecology, 64: 395–399.

    Google Scholar 

  • Arnold, G.W., and Mailer, R.A. 1977. Effects of nutritional experience in early and adult life on the performance and dieting habits of sheep. Applied Animal Ethology, 3: 5–26.

    Google Scholar 

  • Ballinger, R.E. 1977. Reproductive strategies: food availability as a source of proximal variation in a lizard. Ecology, 58: 628–635.

    Google Scholar 

  • Barash, D.P. 1982. Sociobiology and Behaviour. Second edition. Hodder and Stoughton. London, U.K.

    Google Scholar 

  • Barnard, C.J., and Brown, C.A.J. 1981. Prey size selection and competition in the Common Shrew (Sorex areneus L.). Behavioural Ecology and Sociobiology, 8: 239–243.

    Google Scholar 

  • Barnard, C.J., and Stephens, H. 1981. Prey size selection by lapwings in lapwing-gull associations. Behaviour, 77: 1–22.

    Google Scholar 

  • Bateson, P.P.G. 1976. Rules and reciprocity in behavioural development. In: Growing Points in Ethology (ed. by P.P.G. Bateson & R.A. Hinde ), pp. 401–421. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Bateson, P. 1983. Genes, environment and the development of behaviour. In: Animal Behaviour, Volume Genes, Development and Learning (ed. by T.R. Halliday & P.J.B. Slater ), pp. 52–81. Blackwell, Oxford, U.K.

    Google Scholar 

  • Bateson, P. In press. Functional approaches to behavioural development. Proceedings of the International Primatological Congress.

    Google Scholar 

  • Baum, W.M. 1972. Choice in a continuous procedure. Psychonomic Science, 28: 263–265.

    Google Scholar 

  • Baum, W.M. 1974a. On two types of deviation from the matching law: bias and undematching. Journal of the Experimental Analysis of Behaviour, 22: 231–242.

    CAS  Google Scholar 

  • Baum, W.M. 1974b. Choice in free-ranging wild pigeons. Science, 185: 78–79.

    PubMed  CAS  Google Scholar 

  • Baum, W.M. 1979. Matching, unde matching, and ovematching in studies of choice. Journal of the Experimental Analysis of Behavior, 32: 269–281.

    PubMed  CAS  Google Scholar 

  • Baum, W.M. 1982. Instrumental behavior and foraging in the wild. In: Quantitative Analyses of Behavior, Vol. 2: Matching and Maximizing Accounts (ed. by M.L. Commons, R.J. Herrnstein, & H. Rachlin ), pp. 227–240 M. Ballinger Publishing Company, Cambridge, Massachusetts, U.S.A.

    Google Scholar 

  • Baum, W.M. 1983. Studying foraging in the psychological laboratory. In: Animal Cognition and Behavior (ed. by R.L. Mellgren ), pp. 253–283. North-Holland Publishing Company, Amsterdam, Holland.

    Google Scholar 

  • Beardsley, T. 1983. Animals as gamblers. New Scientist, 615–618.

    Google Scholar 

  • Beckeman, S. 1983. Optimal foraging group size for a human population: the case of Bari fishing. American Zoologist, 23: 283–290.

    Google Scholar 

  • Beecher, R.M., Corruccini, R.S., and Freeman, M. 1983. Craniofacial correlates of dietary consistency in a nonhuman primate. Journal of Craniofacial Genetics and Developmental Biology, 3: 193–202.

    PubMed  CAS  Google Scholar 

  • Bell, G., Lefebvre, L., Giraldean, L.A., and Weary, D. 1984. Partial preference of insects for the male flowers of an annual herb. Oecologia, 64: 287–294.

    Google Scholar 

  • Belovsky, G.E. 1978. Diet optimization in a generalist herbivore, the moose. Theoretical Population Biology, 14: 105–134.

    PubMed  CAS  Google Scholar 

  • Belovsky, G.E. 1981. Food plant selection by a generalist herbivore: the moose. Ecology, 62: 1020–1030.

    Google Scholar 

  • Belovsky, G.E. 1984a. Summer diet optimization by beaver. American Midland Naturalist, 111: 209–222.

    Google Scholar 

  • Belovsky, G.E. 1984b. Herbivore optimal foraging: a comparative test of three models. American Naturalist, 124: 97–115.

    Google Scholar 

  • Belovsky, G.E. 1984c. Snowshoe hare optimal foraging and its implications for population dynamics. Theoretical Population Biology, 25: 235–264.

    Google Scholar 

  • Belovsky, G.E. 1984d. Moose and snowshoe hare competition and a mechanistic explanation from foraging theory. Oecologia, 61: 150–159.

    Google Scholar 

  • Bernier, R., and Pirlot, P. 1977. Organe et fonetion: essai de biophilosophie. Maloine, Paris, France.

    Google Scholar 

  • Bernstein, R.A. 1982. Foraging area size and food density: some predictive models. Theoretical Population Biology, 22: 309–323.

    Google Scholar 

  • Bertsch, A. 1983. Nectar production of Epilobium angustifolium L. at different air humidities: nectar sugar in flowers and the optimal foraging theory. Oecologia, 59: 40–48.

    Google Scholar 

  • Bertsch, A. 1984. Foraging in male bumblebees (Bombus lucorum L.): maximizing energy or minimizing water load? Oecologia, 62: 325–336.

    Google Scholar 

  • Best, L.S., and Bierzychudek, P. 1982. Pollinator foraging on foxglove (Digitalis purpurea) - a test of a new model. Evolution, 36: 70–79.

    Google Scholar 

  • Beukema, J.J. 1968. Predation by the three-spined stickleback (Gasterostens aculeatus L.): the influence of hunger and experience. Behaviour, 31: 1–126.

    PubMed  CAS  Google Scholar 

  • Bibby, C.J., and Green, R.E. 1980. Foraging behaviour of migrant pied flycatchers, Ficedula hypoleuca on temporary territories. Journal of Animal Ecology, 49: 507–521.

    Google Scholar 

  • Blois, C., and Cloarec, A. 1983. Density dependent prey selection in the water stick insect, Rann ainearis (Heteroptera). Journal of Animal Ecology, 52: 849–866.

    Google Scholar 

  • Boggs, C.H., Rice, J.A., Kitchell, J.A., and Kitchell, J.F. 1984. Predation at a snail’s pace: what’s time to a gastropod? Oecologia, 62: 13–17.

    Google Scholar 

  • Bond, A.B. 1980. Optimal foraging in a uniform habitat: the search mechanism of the green lacewing. Animal Behaviour, 28: 10–19.

    Google Scholar 

  • Bond, A.B. 1981. Giving-up as a poisson process - the departure decision of the green lacewing. Animal Behaviour, 29: 629–630.

    Google Scholar 

  • Bond, A.B. 1983. The foraging behaviour of lacewing larvae on vertical rods. Animal Behaviour, 31: 990–1004.

    Google Scholar 

  • Boucher, D.H. 1981. The gospel according to sociobiology. Perspectives in Biology and Medicine, 25: 63–65.

    Google Scholar 

  • Bouvier, M., and Hylander, W.L. 1981. Effect of bone strain on cortical bone structure in Macaques (Macaca mulatta). Journal of Morphology, 167: 1–12.

    PubMed  CAS  Google Scholar 

  • Bradley, R.A. 1984. The influence of the quantity of food on fecundity in the desert grassland scorpion (Paruroctonns utaherisis) (Scorpionida, Vaejovidae): an experimental test. Oecologia, 62: 53–56.

    Google Scholar 

  • Brady, R.H. 1979. Natural selection and the criteria by which a theory is judged. Systematic Zoology, 28: 600 - 621.

    Google Scholar 

  • Brady, R.H. 1982. Dogma and doubt. Biological Journal of the Linnean Society, 17: 79–96.

    Google Scholar 

  • Brandt, C.A. 1984. Age and hunting success in the brown pelican: influences of skill and patch choice on foraging efficiency. Oecologia, 62: 132–137.

    Google Scholar 

  • Brattsten, L.B., Wilkinson, C.F., and Eisner, T. 1977. Herbivore-plant interactions: mixed-function oxidases and secondary plant substances. Science, 196: 1349–1352.

    PubMed  CAS  Google Scholar 

  • Brooke, M. de L. 1981. How an adult Wheatear (Oenanthe oenanthe) uses its territory when feeding nestlings. Journal of Animal Ecology, 50: 683–696.

    Google Scholar 

  • Brooke, M. de L. 1983. Wheatears, leatherjackets and a comment on central place foraging. Animal Behaviour, 31: 304–305.

    Google Scholar 

  • Brookfield, J.F.Y. 1982. Adaptation and functional explanation in biology. Evolutionary Theory, 5: 281–290.

    Google Scholar 

  • Brooks, D.R. 1979. Testing the context and extent of host-parasite coevolution. Systematic Zoology, 29: 192–203.

    Google Scholar 

  • Brooks, D.R. 1985. Historical Ecology: a new approach to studying the evolution of ecological associations. Annals of the Missouri Botanical Garden, 72: 660–680.

    Google Scholar 

  • Brower, L.P. 1969. Ecological chemistry. Scientific American, 220: 22–29.

    PubMed  CAS  Google Scholar 

  • Brues, C.T. 1946. Insect Dietary: An Account of the Food Habits of Insects. Harvard University Press, Cambridge, Massachusetts, U.S.A.

    Google Scholar 

  • Bryant, D.M., and Turner, A.K. 1982. Central place foraging by swallows (Hirundinidae): the question of load size. Animal Behaviour, 30: 845–856.

    Google Scholar 

  • Burghardt, G.M. 1964. Effects of prey size and movement on the feeding behaviour of the lizards Anolis carolinensis and Eumaces fasciatus. Copeia, 1964: 576–578.

    Google Scholar 

  • Burghardt, G.M. 1970. Chemical perception in reptiles. In: Communication by Chemical Signals (ed. by J.W. Johnson, D.G. Moulton & A. Turk ). Appleton-Century-Crofts, New York, New York, U.S.A.

    Google Scholar 

  • Butler, S.M., and Bence, J.R. 1984. A diet model for planktivores that follow density-independent rules for prey selection. Ecology, 65: 1885 1894.

    Google Scholar 

  • Caldwell, G.S. 1980. Underlying benefits of foraging aggression in egrets. Ecology, 61: 996–997.

    Google Scholar 

  • Caraco. T. 1980. On foraging time allocation in a stochastic environment. Ecology, 61: 119–128.

    Google Scholar 

  • Caraco, T. 1981. Energy budgets, risk and foraging preferences in dark-eyed juncos. Behavioural Ecology and Sociobiology, 8: 213–217.

    Google Scholar 

  • Caraco, T. 1982. Aspects of risk-aversion in foraging white crowned-sparrows. Animal Behaviour, 30: 719–727.

    Google Scholar 

  • Caraco, T. 1983. White-crowned sparrows. (Zonotrichia leucophrys): foraging preference in a risky environment. Behavioral Ecology and Sociobiology, 12: 63–69.

    Google Scholar 

  • Caraco, T., and Chasin, M. 1984. Foraging preferences: response to reward skew. Animal Behaviour, 32: 76–85.

    Google Scholar 

  • Caraco. T., Matindale, S. and Whittham, T.S. 1980. An empirical demonstration of risk-sensitive foraging preferences. Animal Behaviour, 28: 820–830.

    Google Scholar 

  • Carefoot, T.H. 1973. Feeding, food preference, and the uptake of food energy by the supralittoral isopod, Ligia pallasti. Marine Biology, 18: 228–236.

    Google Scholar 

  • Carlson, A. 1983. Maximizing energy delivery to dependent young: a field experiment with red-backed shrikes (Lanius collurio). Journal of Animal Ecology, 52: 697–704.

    Google Scholar 

  • Carlson, A., and Moreno, J. 1981. Central place foraging in the wheatear Oenanthe oenanthe - an experimental test. Journal of Animal Ecology, 50: 917–924.

    Google Scholar 

  • Carlson, A., and Moreno, J. 1982. The loading effect in central place foraging. Behavioural Ecology and Sociobiology, 11: 173–183.

    Google Scholar 

  • Caro, T.M. 1980a. The effects of experience on the predatory patterns of cats. Behavioural and Neural Biology, 29: 1–28.

    CAS  Google Scholar 

  • Caro, T.M. 1980b. Effects of the mother, object play, and adult experience on predation in cats. Behavioural and Neural Biology, 29: 29–51.

    CAS  Google Scholar 

  • Cassidy, M.D. 1978. Development of an induced food plant preference in the Indian stick insect, Carausius morosus. Entomologia experimentalis et applicata, 24: 87–93.

    Google Scholar 

  • Ceri, R.D., and Fraser, D.F. 1983. Predation and risk in foraging minnows: balancing conflicting demands. American Naturalist, 121: 552–561.

    Google Scholar 

  • Charnov, E.L. 1976a. Optimal foraging: attack strategy of a mantid. American Naturalist, 110: 141–151.

    Google Scholar 

  • Charnov, E.L. 1976b. Optimal foraging: the marginal value theorem. Theoretical Population Biology, 9: 129–136.

    PubMed  CAS  Google Scholar 

  • Charnov, E.L. 1981. Marginal value: an answer to Templeton and Lawlor. American Naturalist, 117: 394.

    Google Scholar 

  • Charnov, E.L. 1982. The Theory of Sex Allocation. Princeton University Press, Princeton, U.S.A.

    Google Scholar 

  • Cheverton, J. 1982. Bumblebees may use a suboptimal arbitrary handedness to solve difficult foraging decisions. Animal Behaviour, 30: 934–935.

    Google Scholar 

  • Cibula, A.A., and Zimmerman, M. 1984. The effect of plant density on departure decisions: testing the marginal value theorem using bumblebees and Delphinium nelsonii. Oikos, 43: 154–158.

    Google Scholar 

  • Clark, C.W., and Mangel, M. 1984. Foraging and flocking strategies: information in an uncertain environment. American Naturalist, 123: 626–641.

    Google Scholar 

  • Clark, D.A. 1982. Foraging behavior of a vertebrate omnivore (Rattus rattus): meal structure, sampling, and diet breadth. Ecology, 63: 763–772.

    Google Scholar 

  • Clutton-Brock, T.H., and Harvey, P.H. 1984. Comparative approaches to investigating adaptation. In: Behavioural Ecology: An Evolutionary Approach, Second edition (ed. by J.R. Krebs & N.B. Davies ), pp. 7–29. Blackwell Scientific Publications, Oxford, U.K.

    Google Scholar 

  • Cockrell, B.J. 1984. Effects of water depth on choice of spatially separated prey by Notonecta glauca L. Oecologia, 62: 256–261.

    Google Scholar 

  • Cody, M.L. 1971. Finch flocks in the Mohave Desert. Theoretical Population Biology, 2: 142–158.

    PubMed  CAS  Google Scholar 

  • Cody, M.L. 1974. Optimization in Ecology. Science, 183: 1156–1164.

    PubMed  CAS  Google Scholar 

  • Cohen, J. 1979. Maternal constraints on development. In: Maternal Effects in Development (ed. by D.R. Newth & M. Balls ), pp. 1–28. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Collier, G.C., and Rovee-Collier, C.K. 1981. A comparative analysis of optimal foraging behaviour: laboratory simulations. In: Foraging Behavior: Ecological, Ethological and Psychological Approaches (ed. by A.C. Kamil & T.D. Sargent ), pp. 39–76. Garland STPM Press, New York, New York, U.S.A.

    Google Scholar 

  • Comins, H.N., and Hassell, M.P. 1979. The dynamics of optimally foraging predators and parasitoids. Journal of Animal Ecology, 48: 335–351.

    Google Scholar 

  • Connell, J.H., and Sousa, W.P. 1983. On the evidence needed to judge ecological stability or persistence. American Naturalist, 121: 789–824.

    Google Scholar 

  • Cook, R.M., and Cockrell, B.J. 1978. Predator ingestion rate and its bearing on feeding time and the theory of optimal diets. Journal of Animal Ecology, 47: 529–547.

    Google Scholar 

  • Cook, R.M., and Hubbard, S.F. 1977. Adaptive searching strategies in insect parasites. Journal of Animal Ecology, 46: 115–126.

    Google Scholar 

  • Corbet, S.A. 1985. Insect chemosensory responses: a chemical legacy hypothesis. Ecological Entomology, 10: 147–153.

    Google Scholar 

  • Corbet, S.A., Cuthill, A.I., Fallows, M., Harrison, T., and Hartley, G. 1981. Why do nectar-foraging bees and wasps work upwards on inflorescences? Oecologia, 51: 79–83.

    Google Scholar 

  • Cornell, H. 1976. Search strategies and the adaptive significance of switching in some general predators. American Naturalist, 110: 317–320.

    Google Scholar 

  • Covich, A. 1972. Ecological economics of seed consumption of Peromyscus: a graphical model of resource substitution. Transactions, Connecticut Academy of Arts and Sciences, 44: 69–93.

    Google Scholar 

  • Covich, A. 1974. Ecological economics of foraging among co-evolving animals and plants. Annales of the Missouri Botanical Garden, 61: 794–805.

    Google Scholar 

  • Covich, A.P. 1976. Analyzing shapes of foraging areas: some ecological and economic theories. Annual Review of Ecology and Systematics, 7: 235–257.

    Google Scholar 

  • Cowie, R.J. 1977. Optimal foraging in the great tits (Parus major). Nature, 268: 137–139.

    Google Scholar 

  • Cowie, R.J., and Krebs, J.R. 1979. Optimal foraging in patchy environments. In: The British Ecological Society Symposium, Vol. 20, Population Dynamics (ed. by R.M. Anderson, B.D. Turner, & L.R. Taylor ), pp. 183–205. Blackwell Scientific Publications, Oxford, U.K.

    Google Scholar 

  • Craig, R.B., DeAngelis, D.L., and Dixon, K.R. 1979. Long- and short-term dynamic optimization models with application to the feeding strategy of the Loggerhead Shrike. American Naturalist, 113: 31–51.

    Google Scholar 

  • Craw, R.C. 1984a. Leon Croizat’s biogeographic work: a personal appreciation. Tuatara, 27: 8–13.

    Google Scholar 

  • Craw, R.C. 1984b. Charles Darwin on “Laws of growth.” Tuatara, 27: 19–20.

    Google Scholar 

  • Craw, R.C., and Weston, P. 1984. Panbiogeography: a progressive research program? Systematic Zoology, 33: 1–13.

    Google Scholar 

  • Crawford, L. 1983. Local contrast and memory windows as proximate foraging mechanisms. Zeitschrift fur Tierpsychologie, 63: 283–293.

    Google Scholar 

  • Croizat, L. 1958. Panbiogeography. Published by the author, Caracas, Venezuela.

    Google Scholar 

  • Croizat, L. 1961. Principia Botanica. Published by the author, Caracas, Venezuela.

    Google Scholar 

  • Croizat, L. 1964. Space, Time, Form: the Biological Synthesis. Published by the author, Caracas, Venezuela.

    Google Scholar 

  • Croizat-Chaley, L. 1978. Hennig (1966) entre Rosa (1918) y Lovtrup (1977): medio siglo de “Sistematica Filogentica.” Bolletin de la Academia de Ciencias fisicas Matematicas y Naturales Caracas, 38: 59–147.

    Google Scholar 

  • Crowder, L.B., and Magnnson, J.J. 1983. Cost-benefit analysis of temperature and food resource use: a synthesis with examples from fishes. In: Behavioural Energetics: the Cost of Survival in Vertebrates (ed. by W.P. Aspey & S.I. Lustick ), pp. 189–221. Ohio State University Press, Columbus, Ohio, U.S.A.

    Google Scholar 

  • Curio. 1976. The Ethology of Predation. Springer-Verlag, Berlin, West Germany.

    Google Scholar 

  • Curio, E. 1983. Time-energy budgets and optimization. Experientia, 39: 25–34.

    Google Scholar 

  • Davidson, D.W. 1978. Experimental tests of optimal diet in two social insects. Behavioural Ecology and Sociobiology, 4: 35–41.

    Google Scholar 

  • Davies, N.B. 1977a. Prey selection and the search strategy of the spotted flycatcher (Muscicapa striata): field study on optimal foraging. Animal Behaviour, 25: 1016–1033.

    Google Scholar 

  • Davies, N.B. 1977b. Prey selection and social behaviour in wagtails (Aves: Motacillidae). Journal of Animal Ecology, 46: 37–57.

    Google Scholar 

  • Davies, N.B., and Houston, A.I. 1981. Owners and satellites: the economics of territory defense in the pied wagtail, Motacilla alba. Journal of Animal Ecology, 50: 157–180.

    Google Scholar 

  • Davies, N.B., and Houston, A.I. 1983. Time allocation between territories and flocks and owner-satellite conflict in foraging pied wagtails, Motacilla alba. Journal of Animal Ecology, 52: 621–634.

    Google Scholar 

  • Davies, N.B., and Houston, A.I. 1984. Territory economics. In: Behavioural Ecology: An Evolutionary Approach, Second edition (ed. by J.R. Krebs & N.B. Davies ), pp. 148–169. Blackwell Scientific Publications, Oxford, U.K.

    Google Scholar 

  • DeBenedictis, P.A., Gill, F.B., Hainsworth, F.R., Pyke, G.H., and Wolf, L.L. 1978. Optimal meal size in hummingbirds. American Naturalist, 112: 301–316.

    Google Scholar 

  • Dethier, V.G. 1954. Evolution of feeding preferences in phytophagous insects. Evolution, 8: 33–54.

    Google Scholar 

  • Dill, L.M., and Fräser, A.H.G. 1984. Risk of predation and the feeding behaviour of juvenile coho salmon (Oncorhynchus kisutch). Behavioural Ecology and Sociobiology, 16: 65–71.

    Google Scholar 

  • Dobzhansky, T. 1956. What is an adaptive trait? American Naturalist, 90: 337–347.

    Google Scholar 

  • Dobzhansky, T. 1968. Adaptedness and fitness. In: Population Biology and Evolution (ed. by R.C. Lewontin ), pp. 109–121. Syracuse University Press, Syracuse, New York, U.S.A.

    Google Scholar 

  • Doyle, R.W. 1979. Ingestion rate of a selective deposit feeder in a complex mixture of particles: testing the energy-optimization hypothesis. Limnology and Oceanography, 24: 867–874.

    Google Scholar 

  • Draulans, D. 1982. Foraging and size selection of mussels by the tufted duck, Aythya fuligula. Journal of Animal Ecology, 51: 943–956.

    Google Scholar 

  • Draulans, D. 1984. Sub-optimal mussel selection by tufted ducks Aythya fuligula: test of a hypothesis. Animal Behaviour, 32: 1192–1196.

    Google Scholar 

  • Dunbar, R.I.M. 1982. Adaptation, fitness and the evolutionary tautology. In: Current Problems in Sociobiology (ed. by King’s College Sociobiology Group ), pp. 9–28. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Dunbrack, R.L. 1979. A re-examination of robbing behavior in foraging egrets. Ecology, 60: 644–645.

    Google Scholar 

  • Dunham, A.E. 1980. An experimental study of interspecific competition between the ignarid lizard Sceloporus merriami and Urosausus ornatus. Ecological Monographs, 50: 309–330.

    Google Scholar 

  • Dunstone, N. 1978. Fishing strategy of the mink (Mustela vison) - Time-budgeting of hunting effort. Behaviour, 67: 157–177.

    Google Scholar 

  • Dunstone, N., and O’Connor, R.J. 1979. Optimal foraging in an amphibious mammal. 1. The aqualung effect. Animal Behaviour, 27: 1182–1194.

    Google Scholar 

  • Durham, W.H. 1981. Overview: optimal foraging analysis. In: Hunter-gatherer Foraging Strategies (ed by. B. Winterhaider & E.A. Smith ). University of Chicago Press, Chicago, U.S.A.

    Google Scholar 

  • Dwyer, P.D. 1984. Functionalism and structuralism: two programs for evolutionary biologists. American Naturalist, 124: 745–750.

    Google Scholar 

  • Ebersole, J.P., and Wilson, J.C. 1980. Optimal foraging - the responses of Peromyscus leucopus to experimental changes in processing time and hunger. Oecologia, 46: 80–85.

    Google Scholar 

  • Egerton, F.N. 1973. Changing concepts of the balance of Nature. Quarterly Review of Biology, 48: 322–350.

    Google Scholar 

  • Ellis, J.E., Wiens, J.A., Rodell, C.F., and Anway, J.C. 1976. A conceptual model of diet selection as an ecosystem process. Journal of Theoretical Biology, 60: 93–108.

    PubMed  CAS  Google Scholar 

  • Elner, R.W., and Hughes, R.N. 1978. Energy maximization in the diet of the shore crab Carcinus maenas. Journal of Animal Ecology, 47: 103–116.

    Google Scholar 

  • Emlen, J.M. 1966. The role of time and energy in food preference. American Naturalist, 100: 611–617.

    Google Scholar 

  • Emlen, J.M. 1968. Optimal choice in animals. American Naturalist, 102: 385–389.

    Google Scholar 

  • Emlen, J.M., and Emlen, G.R. 1975. Optimal choice in diet: test of a hypothesis. American Naturalist, 109: 427–435.

    Google Scholar 

  • Engen, S. 1984. A comment on stochastic approaches to optimal foraging theory. Ecology, 65: 652–654.

    Google Scholar 

  • Engen, S., and Stenseth, N.C. 1984a. An ecological paradox. A food type may become more rare in the diet as a consequence of being more abundant. American Naturalist, 124: 352–359.

    Google Scholar 

  • Engen, S., and Stenseth, N.C. 1984b. A general version of optimal foraging theory: the effect of simultaneous encounters. Theoretical Population Biology, 26: 192–204.

    Google Scholar 

  • Ens, B.J., and Goss-Custard, J.D. 1984. Interference among oystercatchers, Haematopus ostralegus, feeding on mussels, Mytilus edulis, on the Exe Estuary. Journal of Animal Ecology, 53: 217–231.

    Google Scholar 

  • Erichsen, J.T., Krebs, J.R., and Houston, A.I. 1980. Optimal foraging and cryptic prey. Journal of Animal Ecology, 49: 271–276.

    Google Scholar 

  • Erlinge, S. 1981. Food preference, optimal diet and reproductive output in stoats, Mustela erminea in Sweden. Oikos, 36: 303–315.

    Google Scholar 

  • Estabrook, G.F., and Dunham, A.E. 1976. Optimal diet as a function of absolute abundance, relative abundance, and relative value of available prey. American Naturalist, 110: 401–413.

    Google Scholar 

  • Evans, P.R. 1976. Energy balance and optimal foraging strategies in shorebirds: some implications for their distributions and movements in the non-breeding season. Ardea, 64: 117–139.

    Google Scholar 

  • Evans, R.M. 1982. Efficient use of food patches at different distances from a breeding colony in black-billed gulls. Behaviour, 79: 28–38.

    Google Scholar 

  • Eward, J.M. 1913. Is the appetite of swine a reliable indication of physiological needs? Proceedings of the Iowa Academy of Sciences, 22: 375–403.

    Google Scholar 

  • Fagerstrom, T., Moreno, J., and Carlson, A. 1982. Load size and energy delivery in birds feeding nestlings - constraints on and alternative strategies to energy maximization. Oecologia, 56: 93–98.

    Google Scholar 

  • Farrar, D 1962. The Investment Decision Under Uncertainty. Prentice-Hall, Englewood Cliffs, New Jersey, U.S.A.

    Google Scholar 

  • Fitzpatrick, J.W. 1981. Search strategies of tyrant flycatchers. Animal Behaviour, 29: 810–821.

    Google Scholar 

  • Ford, R.G. 1983. Home range in a patchy environment: optimal foraging predictions. American Zoologist, 23: 315–326.

    Google Scholar 

  • Formanowicz, D.R. 1984. Foraging tactics of an aquatic insect: partial consumption of prey. Animal Behaviour, 32: 774–781.

    Google Scholar 

  • Fretwell, S.D. 1972. Populations in a Seasonal Environment. Princeton University Press, Princeton, New Jersey, U.S.A.

    Google Scholar 

  • Fretwell, S.D., and Lucas, H.L. 1970. On territorial behaviour and other factors influencing habitat distribution in birds. Acta Biotheroretica, 19: 16–36.

    Google Scholar 

  • Furnass, T.I. 1979. Laboratory experiments on prey selection by Perch fry (Perca fluviatilis). Freshwater Biology, 9: 33–43.

    Google Scholar 

  • Galef, B.G., Jr., and Henderson, P.W. 1971. Mother’s milk: a determinant of the feeding preferences of weaning rat pups. Journal of Comparative and Physiological Psychology, 78: 213–219.

    Google Scholar 

  • Galis, F., and van Alphen, J.J.M. 1981. Patch time allocation and search intensity of Asofara tabida Nies (Broconidae), a larval parasitoid of Drosophila. Netherland Journal of Zoology, 31: 596–611.

    Google Scholar 

  • Gardner, M.B. 1981. Mechanisms of size selectivity of planktivorous fish: A test of hypothesis. Ecology, 62: 571–578.

    Google Scholar 

  • Garton, E.V. 1979. Implications of optimal foraging theory for insectivorous forest birds. In: Role of Insectivorous Birds in Forest Ecosystems (ed. by J.G. Dickson, R.N. Connor, R.R. Fleet, J.C. Kroll, & J.G. Jackson ), pp. 107–118. Academic Press, New York, New York, U.S.A.

    Google Scholar 

  • Gass, C.L., and Montgomerie, R.D. 1981. Hummingbird foraging behavior: decision making and energy regulation. In: Foraging Behavior: Ecological, Ethological and Psychological Approaches (ed. by. A.C. Kamil & T.D. Sargent ), pp. 159–194. Garland STPM Press, New York, New York, U.S.A.

    Google Scholar 

  • Gendron, R.P., and Staddon, J.E.R. 1983. Searching for cryptic prey: the effect of search rate. American Naturalist, 121: 172–186.

    Google Scholar 

  • Gendron, R.P., and Staddon, J.E.R. 1984. A laboratory simulation of foraging behaviour: the effect of search rate on the probability of detecting prey. American Naturalist, 124: 401–415.

    Google Scholar 

  • Gerritsen, J. 1984. Size efficiency reconsidered: a general foraging model for free-swimming aquatic animals. American Naturalist, 123: 450–467.

    Google Scholar 

  • Gibson, R.M. 1980. Optimal prey-size selection by 3-spined sticklebacks (Gasterosteus aculeatus) a test of the apparent size hypothesis. Zeitscheift fur Tierpsychologie, 52: 291–307.

    Google Scholar 

  • Gilbert, F.S. 1983. The foraging Ecology of hoverflies (Diptera, Syrphidae) circular movements on composite flowers. Behavioral Ecology and Sociobiology, 13: 253–257.

    Google Scholar 

  • Gilbert, J.J. 1966. Rotifer Ecology and embryological induction. Science, 151: 1234–1237.

    PubMed  CAS  Google Scholar 

  • Gill, F.B., and Wolf, L.L. 1975. Foraging strategies and energetics of east african sunbirds at mistletoe flowers. American Naturalist, 109: 491–510.

    Google Scholar 

  • Giller, P.S. 1980. The control of handling time and its effects on the foraging strategy of a heteropteran predator, Notonecta. Journal of Animal Ecology, 49: 699–712.

    Google Scholar 

  • Gilliam, J.F., Green, R.F., and Pearson, N.E. 1982. The fallacy of the traffic policeman: a response to Templeton and Lawlor. American Naturalist, 119: 895–878.

    Google Scholar 

  • Giraldeau, L.A., and Kramer, D.L. 1982. The marginal value theorem - a quantitative test using load size variation in a central place forager, the eastern chipmunk, Tamias striatus. Animal Behaviour, 30: 1036–1042.

    Google Scholar 

  • Gittelman, S.H. 1978. Optimum diet and body size in backswimmers (Heteroptera: Notonectidae, Pleidae). Annals of the Entomological Society of America, 71: 737–747.

    Google Scholar 

  • Glasser, J.W. 1984a. Is conventional foraging theory optimal? American Naturalist, 124: 900–905.

    Google Scholar 

  • Glasser, J.W. 1984b. Evolution of efficiencies and strategies of resource exploitation. Ecology, 65: 1570–1578.

    Google Scholar 

  • Gluck, E. 1984. Habitat selection in birds and the role of early experience. Zietschrift fur Tierpsychologie, 66: 45–54.

    Google Scholar 

  • Godin, J.G.J., and Keenleyside, M.H.A. 1984. Foraging on patchily distributed prey by a cichlid fish (Teleostei, cichlidae): a test of the ideal free-distribution theory. Animal Behaviour, 32: 120–131.

    Google Scholar 

  • Goss-Custard, J.D. 1977a. Optimal foraging and the size selection of worms by redshank (Tringa totanus) in the field. Animal Behaviour, 25: 10–29.

    Google Scholar 

  • Goss-Custard, J.D. 1977b. The energetics of prey selection by redshank Tringa totanus (L.) in relation to prey density. Journal of Animal Ecology, 46: 1–19.

    Google Scholar 

  • Goss-Custard, J.D. 1981. Feeding behavior of redshank, Tringa totanus, and optimal foraging theory. In: Foraging Behavior: Ecological, Ethological, and Psychological Approaches (ed. by A.C. Kamil & T.D. Sargent ), pp. 115–133. Garland STPM Press, New York, New York, U.S.A.

    Google Scholar 

  • Goss-Custard, J.D. 1984. Intake rates and food supply in migrating and wintering shorebirds. In: Shorebirds: Migration and Foraging Behaviour, Behaviour of Marine Animals, Volume 6 (ed. by J. Burger & B.L. Olla ), pp. 233–270. Plenum Press, New York, New York, U.S.A.

    Google Scholar 

  • Gottlieb, G. 1976. Conceptions of prenatal development: behavioural embryology. Psychology Review, 83: 215–234.

    CAS  Google Scholar 

  • Gould, S.J. 1978. Sociobiology: the art of storytelling. New Scientist, 80: 530–533.

    Google Scholar 

  • Gould, S.J. 1981. But not Wright enough: reply to Orzack. Paleobiology, 7: 131–134.

    Google Scholar 

  • Gould, S.J. 1984. Covariance sets and ordered geographic variation in Cerion from Arabia, Bonnaire, and Curacao: a way of studying nonadaptation. Systematic Zoology, 33: 217–237.

    Google Scholar 

  • Gould, S.J., and Lewontin, R.C. 1979. The spandrels of San Marco and the panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London, Series B, 205: 581–598.

    CAS  Google Scholar 

  • Gradwohl, J.A., and Greenberg, R. 1984. Search behaviour of the checker-throated antwren foraging in aerial leaf litter. Behavioural Ecology and Sociobiology, 15: 281–285.

    Google Scholar 

  • Grant, J.W.G., and Bayley, I.A.E. 1981. Predators induction of crests in morphs of the Daphnia carinata King complex. Limnology and Oceanography 26: 201–218.

    Google Scholar 

  • Gray, L. 1981. Genetic and experiential differences affecting foraging behaviour. In: Foraging Behaviour: Ecological, Ethological and Psychological Approaches (ed. by A.C. Kamil & T.D. Sargent ), pp. 455–473. Garland STPM Press, New York, New York, U.S.A.

    Google Scholar 

  • Gray, R. In press. Metaphors and methods: Behavioral Ecology, panbiogeography and the evolving synthesis. In: Process and Metaphors in the New Evolutionary Paradigm (ed. by M.W. Ho & S. Fox). John Wiley & Sons, London, U.K.

    Google Scholar 

  • Green, R.F. 1980. Bayesian birds: simple example of Oatenfs stochastic model of optimal foraging. Theoretical Population Biology, 18: 244–256.

    Google Scholar 

  • Green, R.F. 1984. Stopping rules for optimal foragers. American Naturalist 123: 30–43.

    Google Scholar 

  • Greenstone, M.H. 1979. Spider feeding behaviour optimises dietary essential amino acid composition. Nature, 282: 501–503.

    Google Scholar 

  • Greenstone, M.H. 1980. Nature, 284: 578.

    Google Scholar 

  • Greenwood, J.J.D. 1984. The evolutionary Ecology of predation. In: Evolutionary Ecology: The 23rd Symposium of the British Ecological Society, Leeds, 1982 (ed. by B. Shorrocks ), pp. 233–273. Blackwell Scientific Publications, Oxford, U.K.

    Google Scholar 

  • Greenwood, P.H. 1965. Environmental effects on the pharyngeal mill of a chichlid fish, Astatoreochromis alluaudi and the taxonomic implications. Proceedings of the Linnean Society of London, 176: 1–10.

    Google Scholar 

  • Grehan, J.R. 1984. The host range of Aenetus virescens (Lepidoptera: Hepialidae) and its evolution. New Zealand Entomologist, 8: 52–61.

    Google Scholar 

  • Greig-Smith, P.W. 1984. Food-handling by bullfinches in relation to the risks associated with dropping seeds. Animal Behaviour, 32: 929–931.

    Google Scholar 

  • Griffiths, D. 1975. Prey availability and the food of predators. Ecology, 56: 1209–1214.

    Google Scholar 

  • Griffiths, D. 1981. Sub-optimal foraging in the ant-lion Macroleon quinquemaculatus. Journal of Animal Ecology, 50: 697–702.

    Google Scholar 

  • Griffiths, D. 1982. Tests of alternative models of prey consumption by predators, using ant-lion larvae. Journal of Animal Ecology, 51: 363–373.

    Google Scholar 

  • Grossman, M.I., Greengard, H., and Ivy, A.C. 1943. The effect of dietary composition on pancreatic enzymes. American Journal of Physiology, 138: 676–682.

    CAS  Google Scholar 

  • Grubb, T.C. 1979. Factors controlling foraging strategies of insectivorous birds. In: Role of Insectivorous Birds in Forest Ecosystems (ed. by J.G. Dickson, R.N. Connor, R.R. Fleet, J.C. Kroll, & J.G. Jackson ), pp. 119–135. Academic Press, New York, New York, U.S.A.

    Google Scholar 

  • Grubb, T.C., and Greenwald, L. 1982. Sparrows and a brushpile - foraging responses to different combinations of predation risk and energy cost. Animal Behaviour, 30: 637–640.

    Google Scholar 

  • Hailman, J.P. 1982a. Evolution and behaviour: an iconoclastic view. In: Learning, Development and Culture (ed. by H.C. Plotkin ), pp. 205–254. John Wiley and Sons, London, U.K.

    Google Scholar 

  • Hailman, J.P. 1982b. Ontogeny: towards a general theoretical framework for Ethology. In: Perspectives in Ethology, Vol. 5 (ed. by P.P.G. Bateson & P.H. Klopfer ), pp. 133–189. Plenum Press, New York, New York, U.S.A.

    Google Scholar 

  • Hainsworth, F.R. 1978. Feeding: Models of costs and benefits in energy regulation. American Zoologist, 18: 701–714.

    Google Scholar 

  • Hainsworth, F.R., and Wolf, L.L. 1976. Nectar characteristics and food selection by hummingbirds. Oecologia, 25: 101–113.

    Google Scholar 

  • Hainsworth, F.R., and Wolf, L.L. 1983. Models and evidence for feeding control of energy. American Zoologist, 23: 261–272.

    Google Scholar 

  • Hainsworth, F.R., Tardiff, M.F., and Wolf, L.L. 1981. Proportional control for daily energy regulation in hummingbirds. Physiological Zoology, 54: 452–462.

    Google Scholar 

  • Harley, C.B. 1981. Learning the evolutionarily stable strategy. Journal of Theoretical Biology, 89: 611–633.

    PubMed  CAS  Google Scholar 

  • Harley, C.B. 1983. When do animals learn the evolutionary stable strategy? Journal of Theoretical Biology, 105: 179–181.

    PubMed  CAS  Google Scholar 

  • Harper, D.G.C. 1982. Competitive foraging in mallards: “ideal free” ducks. Animal Behaviour, 30: 575–584.

    Google Scholar 

  • Harper, J.L. 1982. After description. In: The Plant Community as a Working Mechanism (ed. by E.I. Newman ), pp. 11–25. Blackwell Scientific Publications, Oxford, U.K.

    Google Scholar 

  • Hartling, L.K., and Plowright, R.C. 1979. Foraging by bumblebees on patches of artificial flowers: a laboratory study. Canadian Journal of Zoology, 57: 1866–1870.

    Google Scholar 

  • Hassell, M.P., and Southwood, T.R.E. 1978. Foraging strategies of insects. Annual Review of Ecology and Systematics, 9: 75–98.

    Google Scholar 

  • Hassell, M.P. 1980. Foraging strategies, population models and biological control - a case study. Journal of Animal Ecology, 49: 603–628.

    Google Scholar 

  • Haynes, J., and Mesler, M. 1984. Pollen foraging by bumblebees: foraging patterns and efficiency on Lupinus polyphyllus. Oecologia, 61: 249–253.

    Google Scholar 

  • Heather, B.D. 1977. Foot-trembling by the black-fronted dotteral. Notornis, 24: 1–8.

    Google Scholar 

  • Hegner, R.E. 1982. Central place foraging in the white-fronted bee-eater. Animal Behaviour, 30: 953–963.

    Google Scholar 

  • Heinrich, B. 1979a. Majoring and minoring by foraging bumblebees Bobumbus vagans: an experimental analysis. Ecology, 60: 245–255.

    Google Scholar 

  • Heinrich, B. 1979b. Bumblebee Economics. Harvard University Press, Cambridge, Massachusetts, U.S.A.

    Google Scholar 

  • Heinrich, B. 1983. Do bumblebees forage optimally, and does it matter? American Zoologist, 23: 273–281.

    Google Scholar 

  • Heinrich, B., and Heinrich, M.J.E. 1984. The pit-trapping foraging strategy of the ant lion, Myrmeleon immaculatus De Geer (Neuroptera: Myrmeleontidae). Behavioural Ecology and Sociobiology, 14: 151–160.

    Google Scholar 

  • Heithaus, E.R., and Fleming, T.H. 1978. Foraging movements of a frugivorous bat, Carollia perspicillata (Phyllostomatidae). Ecological Monographs, 48: 127–143.

    Google Scholar 

  • Heller, R. 1980. On optimal diet in a patchy environment. Theoretical Population Biology, 17: 201–214.

    PubMed  CAS  Google Scholar 

  • Heller, R., and Milinski, M. 1979. Optimal foraging of sticklebacks on swarming prey. Animal Behaviour, 27: 1127–1141.

    Google Scholar 

  • Herrnstein, R.S. 1964. Aperiodicity as a factor in choice. Journal of the Experimental Analysis of Behaviour, 7: 179–182.

    CAS  Google Scholar 

  • Herrnstein, R.J., and Heyman, G.M. 1979. Is matching compatible with reinforcement maximization on concurrent variable interval, variable ratio? Journal of the Experimental Analysis of Behaviour, 31: 209–223.

    CAS  Google Scholar 

  • Himmelfarb, G. 1962. Darwin and the Darwinian Revolution. Doubleday, New York, New York, U.S.A.

    Google Scholar 

  • Hixon, M.A. 1982. Energy maximizers and time minimizers: theory and reality. American Naturalist, 119: 596–599.

    Google Scholar 

  • Ho, M.W. 1984a. Where does biological form come from? Rivista di Biología 77: 147–179.

    Google Scholar 

  • Ho, M.W. 1984b. Environment and heredity in development and evolution. In: Beyond Neo-Darwinism (ed. by. M.W. Ho & P.T. Saunders ), pp. 267–289. Academic Press, London, U.K.

    Google Scholar 

  • Ho, M.W. In press. Evolution: natural selection or self-organization? Proceedings of the International Study Group on Self-organization and Dissipative Structures. Cumberland Lodge, London, U.K.

    Google Scholar 

  • Ho, M.W., and Saunders, P.T. 1979. Beyond neo-Darwinism: an epigenetic approach to evolution. Journal of Theoretical Biology, 78: 573–591.

    PubMed  CAS  Google Scholar 

  • Ho, M.W., and Saunders, P.T. 1982a. Adaptation and natural selection: mechanism and teleology. In: Towards a Literatory Biology (ed. by S. Rose ), pp. 85–102. Allison and Busby, London, U.K.

    Google Scholar 

  • Ho, M.W., and Saunders, P.T. 1982b. The epigenetic approach to the evolution of organisms - with notes on its relevance to social and cultural evolution. In: Learning, Development and Culture (ed. by H.C. Plotkin ), pp. 343–361. John Wiley and Sons, London, U.K.

    Google Scholar 

  • Hodapp, A., and Fry, D. 1982. Optimal foraging by firemouth cichlids, Cichasoma meeki, in social context. Animal Behaviour, 30: 983–989.

    Google Scholar 

  • Hodges, C.M. 1981. Optimal foraging in bumblebees - hunting by expectation. Animal Behaviour, 29: 1166–1171.

    Google Scholar 

  • Hodges, C.M., and Wolf, L.L. 1981. Optimal foraging in bumblebees: why is nectar left behind in flowers? Behavioural Ecology and Sociobiology 9: 41–44.

    Google Scholar 

  • Hoffman, G. 1983. Optimization of brownian search strategies. Biological Cyberretics, 49: 21–31.

    Google Scholar 

  • Holling, C.S. 1959. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Canadian Entomologist, 91: 293–320.

    Google Scholar 

  • Holmes, W.G. 1984. Predation risk and foraging behaviour of the hoary mormot in Alaska. Behavioural Ecology and Sociobiology, 15: 293–301.

    Google Scholar 

  • Holt, R.D. 1983. Optimal foraging and the form of the predator isocline. American Naturalist, 122: 521–541.

    Google Scholar 

  • Horn, H.S., and Rubenstein, D.I. 1984. Behavioural adaptations and life history. In: Behavioural Ecology: An Evolutionary Approach, Second edition (ed. by J. R. Krebs & N.B. Davies ), pp. 279–298. Blackwell Scientific Publications, Oxford, U.K.

    Google Scholar 

  • Horn, M.H. 1983. Optimal diets in complex environments - feeding strategies of 2 herbivorous fishes from a temperate rocky intertidal zone. Oceologia, 58: 345–350.

    Google Scholar 

  • Houston, A.I. 1980. Godzilla v. the creature from the black lagoon. In: The Analysis of Motivational Systems (ed. by M.F. Toates & T.R. Halliday ), pp. 297–318. Academic Press, New York, New York, U.S.A.

    Google Scholar 

  • Houston, A.I. 1983. Comments on “Learning the evolutionary stable strategy.” Journal of Theoretical Biology, 105: 175–178.

    PubMed  CAS  Google Scholar 

  • Houston, A., Kacelnik, A., and McNamara, J.M. 1982. Some learning rules for acquiring information. In: Functional Ontogeny (ed. by D. McFarland ), pp. 140–191. Pitman Publishing, Boston, Massachusetts, U.S.A.

    Google Scholar 

  • Houston, A.I., Krebs, J.R., and Erichsen, J.T. 1980. Optimal prey choice and discrimination time in the great tit (Parus major L.). Behavioural Ecology and Sociobiology, 6: 169–175.

    Google Scholar 

  • Houston, A.I., and McNamara, J.M. 1982. A sequential approach to risk taking. Animal Behaviour, 30: 1260–1261.

    Google Scholar 

  • Houston, A.I., and McNamara, J.M. 1984. Imperfectly optimal animals. A correction. Behavioural Ecology and Sociobiology, 15: 61–64.

    Google Scholar 

  • Howell, D.J., and Hartl, D.L. 1980. Optimal foraging in glossophagine bats: when to give up. American Naturalist, 115: 696–704.

    Google Scholar 

  • Howell, D.J., and Hartl, D.L. 1982. In defense of optimal foraging by bats: a reply to Schluter. American Naturalist, 119: 438–439.

    Google Scholar 

  • Hubbard, S.F., and Cook, R.M. 1978. Optimal foraging by parasitoid wasps. Journal of Animal Ecology, 47: 593–604.

    Google Scholar 

  • Hubbard, S.F., Cook, R.M., Glover, J.G., and Greenwood, J.J.D. 1982. Apostatic selection as an optimal foraging strategy. Journal of Animal Ecology, 51: 625–633.

    Google Scholar 

  • Huey, R.B., Bennett, A.F., John-Alder, H., and Nagy, K.A. 1984. Locomotor capacity and foraging behaviour of Kalahari lacertid lizards. Animal Behaviour, 32: 41–50.

    Google Scholar 

  • Hughes, R.N. 1979. Optimal diets under the energy maximization premise: the effects of recognition time and learning. American Naturalist, 113: 209–221.

    Google Scholar 

  • Hughes, R.N. 1980. Optimal foraging theory in the marine context. Oceanography and Marine Biology Annual Reviews, 18: 423–481.

    Google Scholar 

  • Hughes, R.N., and Elner, R.W. 1979. Tactics of a predator, Carcinus maenas, and morphological responses of the prey, Nucella lapillus. Journal of Animal Ecology, 48: 65–78.

    Google Scholar 

  • Hughes, R.N., and Seed, R. 1981. Size selection of mussels by the blue crab Calinectes sapidus. Energy maximizer or time minimizer. Marine Ecology, 6: 83–89.

    Google Scholar 

  • Humphreys, W.F. 1980. Spider feeding behaviour optimises dietary essential amino acid composition. Nature, 284: 578.

    Google Scholar 

  • Inoue, T. 1983a. Foraging strategy of a non-omniscient predator in a changing environment (I). Model with a data window and absolute criterion. Researches in Population Ecology, 25: 81–104.

    Google Scholar 

  • Inoue, T. 1983b. Foraging strategy of a non-omniscient predator in a changing environment (II). Model with two data windows and a relative comparison criterion. Researches in Population Ecology, 25: 264–279.

    Google Scholar 

  • Inoue, T., and Matsura, T. 1983. Foraging strategy of a mantid, Paratenodera angustipennis Mechanisms of switching tactics between ambush and active search. Oecologia, 56: 264–271.

    Google Scholar 

  • Ivlev, V.S. 1961. Experimental Feeding Ecology of Fishes. Yale University Press, New Haven, Connecticut, U.S.A.

    Google Scholar 

  • Iwasa, Y., Higashi, M., and Yamamura, N. 1981. Prey distribution as a factor determining the choice of optimal foraging strategy. American Naturalist, 117: 710–723.

    Google Scholar 

  • Jaeger, R.G., and Barnard, D.E. 1981. Foraging tactics of a terrestrial salamander: choice of diet in structurally simple environment. American Naturalist, 117: 639–664.

    Google Scholar 

  • Jaeger, R.G., Barnard, D.E., and Joseph, R.G. 1982. Foraging tactics of a terrestrial salamander: assessing prey density. American Naturalist, 119: 895–890.

    Google Scholar 

  • Jaeger, R.G., Joseph, R.G., and Barnard, D.E. 1981. Foraging tacts of a terrestrial salamander - sustained yield in territories. Animal Behaviour, 29: 1100–1105.

    Google Scholar 

  • Jaeger, R.G., Nishikawa, K.L.B., and Barnard, D.E. 1983. Foraging tactics of a terrestrial salamander: costs of territorial defense. Animal Behaviour, 31: 191–198.

    Google Scholar 

  • Jaeger, R.G., and Rubin, A.M. 1982. Foraging tactics of a terrestrial salamander - judging prey profitability. Journal of Animal Ecology, 51: 167–176.

    Google Scholar 

  • Jamieson, I.G. 1986. The functional approach to behaviour: is it useful? American Naturalist, 127: 195–208.

    Google Scholar 

  • Jander, R. 1982. Random and systematic search in foraging insects. In: The Biology of Social Insects (ed. by M.D. Breed, C.D. Michener, & H. E. Evans ), pp. 28–31. Westview, Boulder, Colorado, U.S.A.

    Google Scholar 

  • Janetos, A.C. 1982. Active foragers vs. sit and wait predators. A simple model. Journal of Theoretical Biology, 95: 381–385.

    Google Scholar 

  • Janetos, A.C., and Cole, B.J. 1981. Imperfectly optimal animals. Behavioural Ecology and Sociobiology, 9: 203–210.

    Google Scholar 

  • Janssen, J. 1983. How do bluegills “select” large daphnia in turbid water. Ecology, 64: 403.

    Google Scholar 

  • Jenkins, S.H. 1980. A size-distance relation in food selection by beavers. Ecology, 61: 740–746.

    Google Scholar 

  • Jenkins, S.H. 1982. Management implications of optimal foraging theory: a critique. Journal of Wildlife Management, 46: 255–257.

    Google Scholar 

  • Jermy, T., Hanson, F.E., and Dethier, V.C. 1968. Induction of specific food preference in lepidopterous larvae. Entomología experimentalis et applicata, 11: 211–230.

    Google Scholar 

  • Jones, C.G. 1983. Microorganisms as mediators of resource exploitation. In: A New Ecology: Novel Approaches to Interactive Systems (ed. by P.W. Price, C.N. Slobodchikoff & W.S. Gand ), pp. 53–99. John Wiley and Sons, New York, New York, U.S.A.

    Google Scholar 

  • Johnston, T.D. 1984. Development and the origin of behavioural strategies. Behavioural and Brain Sciences, 7: 108–109.

    Google Scholar 

  • Johnston, T.D., and Gottlieb, G. The origins of variations: a developmental problem for evolutionary theory. Unpublished manuscript.

    Google Scholar 

  • Jubb, C.A., Hughes, R.N., and Rheinallt, T.Ap. 1983. Behavioural mechanisms of size-selection by crabs, Carcinus maenas (L.) feeding on mussels, Mytihs edulis L. Journal of Experimental Marine Biology and Ecology, 66: 81–87.

    Google Scholar 

  • Kacelnik, A. 1979. Studies of Foraging Behaviour and Time Budgeting in Great Tits (Parus major). D. Phil, thesis, Oxford University, Oxford, U.K.

    Google Scholar 

  • Kacelnik, A. 1984. Central place foraging in starlings (Sturnus vulgaris) I. Patch residence time. Journal of Animal Ecology, 53: 283–289.

    Google Scholar 

  • Kacelnik, A., and Houston, A.I. 1984. Some effects of energy costs on foraging strategies. Animal Behaviour, 32: 609–614.

    Google Scholar 

  • Kacelnik, A., Houston, A.I., and Krebs, J.R. 1981. Optimal foraging and territorial defense in the great tit (Parus major). Behavioural Ecology and Sociobiology, 8: 35–40.

    Google Scholar 

  • Kamil, A.C. 1983. Optimal foraging theory and the psychology of learning. American Zoologist, 23: 291–302.

    Google Scholar 

  • Kamil, A.C., Peters, J., and Lindstrom, F.J. 1982. An ecological perspective on the study of the allocation of behaviour. In: Quantitative Analysis of Behaviour, Volume 2, Matching and Maximizing Accounts (ed. by R.L. Commons, R.J. Herrnstein & H. Rachlin ), pp. 189–203. Ballinger New York, New York, U.S.A.

    Google Scholar 

  • Kamil, A.C., and Sargent, T.D. 1981. Foraging Behavior: Ecological, Ethological, and Psychological Approaches. Garland STPM Press, New York, New York, U.S.A.

    Google Scholar 

  • Kamil, A.C., and Yoerg, S.J. 1982. Learning and foraging behaviour. In: Perspectives in Ethology, Vol. 5 (ed. by P.P.G. Bateson & P.H. Klopfer ) pp. 325–364. Plenum Press, New York, New York, U.S.A.

    Google Scholar 

  • Kasuyo, E. 1982. Central place water collection in a Japanese paper wasp, Polistes chinensis antennalis. Animal Behaviour, 30: 1010–1014.

    Google Scholar 

  • Katz, P.L. 1974. A long-term approach to foraging optimization. American Naturalist, 198: 758–782.

    Google Scholar 

  • Kaufman, L.W., and Collier, G. 1981. Economics of seed handling. American Naturalist, 118: 46–60.

    Google Scholar 

  • Kawai, M. 1965. Newly acquired pre-cultural behavior of the natural troop of Japanese monkeys on Koshima Islet. Primates, 6: 1–30.

    Google Scholar 

  • Keene, A.S. 1981. Optimal foraging in nonmarginal environments, model of prehistoric subsistence strategies in Michigan. In: Hunter-gatherer Foraging Strategies (ed. by B. Winterhaider & E.A. Smith ), pp. 171–193. University of Chicago Press, Chicago, U.S.A.

    Google Scholar 

  • Kenwood, R.E., and Sibly, R.M. 1977. A woodpigeon (Columba palumbus) feeding preference explained by a digestive bottleneck. Journal of Applied Ecology, 14: 815–826.

    Google Scholar 

  • Kephart, D.G., and Arnold, S.J. 1982. Garter snake diets in a fluctuating environment: a seven-year study. Ecology, 63: 1232–1236.

    Google Scholar 

  • Killeen, P.R., Smith, J.P., and Hanson, S.J. 1981. Central place foraging in Rattus norvegicus. Animal Behaviour, 29: 64–70.

    Google Scholar 

  • Kimbrough, S.O. 1980. The concepts of fitness and selection in evolutionary biology. Journal of Social and Biological Structure, 3: 149–170.

    Google Scholar 

  • Kislalioglu, M., and Gibson, R.N. 1976. Prey “handling time” and its importance in food selection by the 15-spined stickleback, Spinachia spinachia (L.). Journal of Experimental Marine Biology and Ecology, 25: 151–158.

    Google Scholar 

  • Kitchell, J.A., Boggs, C.H., Kitchell, J.F., and Rice, J.A. 1981. Prey selection by naticid gastropods: experimental tests and application to the fossil record. Paleobiology, 7: 533–552.

    Google Scholar 

  • Kohler, S.L. 1984. Search mechanism of a stream grazer in patchy environments: the role of food abundance. Oecologia, 62: 209–218.

    Google Scholar 

  • Kramer, D.L., and Nowell, W. 1980. Central place foraging in the eastern chipmunk, Tamias striatus. Animal Behaviour, 28: 772–778.

    Google Scholar 

  • Krans, B. 1983. A test of the optimal-density model for seed scatterhoarding. Ecology, 64: 608–610.

    Google Scholar 

  • Krebs, J.R. 1973. Behavioural aspects of predation. In: Perspectives in Ethology, Volume 1 (ed. by P.P.G. Bateson & P.H. Klopfer ), pp. 73–111. Plenum Press, New York, New York, U.S.A.

    Google Scholar 

  • Krebs, J.R. 1977. Optimal foraging: theory and experiment. Nature, 268: 583–584.

    Google Scholar 

  • Krebs, J.R. 1978. Optimal foraging: decision rules for predators. In: Behavioural Ecology: An Evolutionary Approach (ed. by J.R. Krebs & N.B. Davies ), pp. 23–63. Blackwell Scientific Publications, Oxford, U.K.

    Google Scholar 

  • Krebs, J.R. 1979. Foraging strategies and their social significance. In: Handbook of Behavioral Neurobiology: Volume 3, Social Behavior and Communication (ed. by P. Marler & J.G. Vandenbergh ), pp. 225–270. Plenum Press, New York, New York, U.S.A.

    Google Scholar 

  • Krebs, J.R. 1980. Optimal foraging, predation risk, and territory defense. Ardea, 68: 83–90.

    Google Scholar 

  • Krebs, J.R. 1983. From skinner box to the field. Nature, 304: 117.

    PubMed  CAS  Google Scholar 

  • Krebs, J.R., and Cowie, R.J. 1976. Foraging strategies in birds. Ardea, 64: 98–116.

    Google Scholar 

  • Krebs, J.R., and Davies, N.B. 1981. An Introduction to Behavioural Ecology. Blackwell Scientific Publications, Oxford, U.K.

    Google Scholar 

  • Krebs, J.R., Erichsen, J.T., Webber, M.I., and Charnov, E.L. 1977. Optimal prey selection in the great tit (Parus major). Animal Behaviour, 25: 30–38.

    Google Scholar 

  • Krebs, J.R., Houston, A.I., and Charnov, E.L. 1981. Some recent developments in optimal foraging. In: Foraging Behaviour: Ecological, Ethological and Psychological Approaches (ed. by A.C. Kamil & T.D. Sargent ), pp. 3–18. Garland STPM Press, New York, New York, U.S.A.

    Google Scholar 

  • Krebs, J.R., and Kacelnik, A. 1984. Time horizons of foraging animals. In: Timing and Time Perception. Annals of the New York Academy of Sciences, Volume 423 (ed. by J. Gibbon & L. Allan ), pp. 278–291. The New York Academy of Sciences, New York, New York, U.S.A.

    Google Scholar 

  • Krebs, J.R., Kacelnik, A., and Taylor, P. 1978. Test of optimal sampling by foraging great tits. Nature, 275: 27–31.

    Google Scholar 

  • Krebs, J.R., and McCleery, R.H. 1984. Optimization in behavioural Ecology. In: Behavioural Ecology: An Evolutionary Approach, Second edition (ed. by J.R. Krebs & N.B. Davies ), pp. 91–121. Blackwell Scientific Publications, Oxford, U.K.

    Google Scholar 

  • Krebs, J.R., Ryan, J.C., and Charnov, E.L. 1974. Hunting by expectation or optimal foraging? A study of patch use by chickadees. Animal Behaviour, 22: 953–964.

    Google Scholar 

  • Krebs, J.R., Stephens, D.W., and Sutherland, W.J. 1983. Perspectives in optimal foraging. In: Perspectives in Ornithology (ed. by G.A. Clark & A.H. Brush ), pp. 165–216. Cambridge University Press, New York, New York, U.S.A.

    Google Scholar 

  • Krimbas, C.B. 1984. On adaptation, neo-Darwinian tautology, and population fitness. Evolutionary Biology, 17: 1–57.

    Google Scholar 

  • Krueger, D.A., and Dodson, S.I. 1981. Embryological induction and prédation Ecology in Daphnia pulex. Limnology and Oceanography, 26: 219–223.

    Google Scholar 

  • Kruse, K.C. 1983. Optimal foraging by predaceous diving beetle larvae on toad tadpoles. Oecologia, 58: 383–388.

    Google Scholar 

  • Kuhn, T.S. 1957. The Copernican Revolution. Harvard University Press, Cambridge, Massachusetts, U.S.A.

    Google Scholar 

  • Kuo, Z.Y. 1967. The Dynamics of Behaviour Development: an Epigenetic View. Random House, New York, New York, U.S.A.

    Google Scholar 

  • Kushlan, J.A. 1978. Nonrigorous foraging by robbing egrets. Ecology, 59: 649–653.

    Google Scholar 

  • Kushlan, J.A. 1979. Short-term energy maximization of egret foraging. Ecology, 60: 645–646.

    Google Scholar 

  • Lacher, T.E., Jr., Willig, M.R., and Mares, M.A. 1982. Food preference as a function of resource abundance with multiple prey types: an experimental analysis of optimal foraging theory. American Naturalist, 120: 297–316.

    Google Scholar 

  • Lakatos, I. 1970. Falsification and the methodology of scientific research programmes. In: Criticism and the Growth of Knowledge (ed. by I. Lakatos & A. Musgrave ), pp. 91–95. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Lam, R.K., and Frost, B.W. 1976. Model of copepod filtering response to changes in size and concentration of food. Limnology and Oceanography, 21: 490–500.

    Google Scholar 

  • Lawton, J.H., Beddington, J.R., and Bonser, R. 1974. Switching in invertebrate predators. In: Ecological Stability (ed. by M.B. Usher & M.H. Williamson ), pp. 141–158. Chapman and Hall, London, U.K.

    Google Scholar 

  • Lea, S.E.G. 1979. Foraging and reinforcement schedules in the pigeon - optimal and non-optimal aspects of choice. Animal Behaviour, 27: 875–886.

    Google Scholar 

  • Lea, S.E.G. 1981. Correlation and contiguity in foraging behavior. In: Predictability, Correlation, and Contiguity (ed. by P. Harzern & M.D. Zeiler ), pp. 355–405. John Wiley and Sons, Chichester, U.K.

    Google Scholar 

  • Lea, S.E.G. 1982. The mechanism of optimality in foraging. In: Quantitative Analyses of Behavior, Volume 2: Matching and Maximizing Accounts (ed. by M.L. Commons, R.J. Herrnstein, & H. Rachlin ), pp. 169–188. Ballinger Publishing Company, Cambridge, Massachusetts, U.S.A.

    Google Scholar 

  • Lea, S.E.G., and Dow, S.M. 1984. The integration of reinforcements over time. In: Timing and Time Perception. Annals of the New York Academy of Sciences, Volume 423 (ed. by J. Gibbon & L. Allan), pp. 269–277. The New York Academy of Sciences, New York, New York, U.S.A.

    Google Scholar 

  • Lefebvre, L. 1983. Equilibrium distribution of feral pigeons at multiple food sources. Behavioural Ecology and Sociobiology, 12: 11–17.

    Google Scholar 

  • Lehman, J.T. 1976. The filter-feeder as an optimal forager, and the predicted shapes of feeding curves. Limnology and Oceanography, 21: 501–516.

    Google Scholar 

  • Lehrman, D.S. 1953. A critique of Konrad Lorenz’s theory of instinctive behaviour. Quarterly Review of Biology, 28: 337–363.

    PubMed  CAS  Google Scholar 

  • Lehrman, D.S. 1970. Semantic and conceptual issues in the Nature-nurture problem. In: Development and Evolution of Behaviour (ed. by L.R. Aronson, E. Tobach, D.S. Lehrman, & J.S. Rosenblatt ), pp. 17–52. Freeman, San Francisco, U.S.A.

    Google Scholar 

  • Lemke, O. 1984. Foraging Ecology of the long-nosed bat, Glossophaga soricina, with respect to resource availability. Ecology, 65: 538–548.

    Google Scholar 

  • Lerner, I.M. 1954. Genetic Homeostasis. Oliver and Boyd, Edinburgh, U.K.

    Google Scholar 

  • Lessells, C.M., and Stephens, D.W. 1983. Central place foraging - single prey loaders again. Animal Behaviour, 31: 238–243.

    Google Scholar 

  • Lester, N.P. 1984. The “feed: feed” decision: how goldfish solve the patch depletion problem. Behaviour, 89: 175–199.

    Google Scholar 

  • Leventhal, A.M., Morrell, R.F., Morgan, E.E., Jr., and Perkins, C.C., Jr. 1959. The relation between mean reward and mean reinforcement. Journal of Experimental Psychology, 57: 284–287.

    PubMed  CAS  Google Scholar 

  • Levey, D.J., Moermond, T.C., and Denslow, J.S. 1984. Fruit choice in neotropical birds: the effect of distance between fruits on preference patterns. Ecology, 65: 844–850.

    Google Scholar 

  • Levins, R. 1966. The strategy of model building in population biology. American Scientist, 54: 421–431.

    Google Scholar 

  • Levins, R., and MacArthur, R. 1969. An hypothesis to explain the incidence of monophagy. Ecology, 50: 910–911.

    Google Scholar 

  • Lewis, A.R. 1980. Patch use by gray squirrels and optimal foraging. Ecology, 61: 1371–1379.

    Google Scholar 

  • Lewis, A.R. 1982. Selection of nuts by gray squirrels and optimal foraging theory. American Midland Naturalist, 107: 250–257.

    Google Scholar 

  • Lewontin, R.C. 1971. The effect of genetic linkage on mean fitness of a population. Proceedings of the National Academy of Science, 68: 984–986

    CAS  Google Scholar 

  • Lewontin, R.C. 1978. Adaptation. Scientific American, 239: 156–169.

    Google Scholar 

  • Lewontin, R.C. 1979a. Sociobiology as an adaptationist program. Behavioural Science, 24: 5–14.

    CAS  Google Scholar 

  • Lewontin, R.C. 1979b. Fitness, survival and optimality. In: Analysis of Ecological Systems (ed. by D.H. Horn, R. Mitchell & G.R. Stairs ), pp. 3–21. Ohio State University Press, Columbus, Ohio, U.S.A.

    Google Scholar 

  • Lewontin, R.C. 1980. Adaptation. Reprinted from the Encyclopedia Einaudi, Milan, Italy. In: Conceptual Issues in Evolutionary Biology: An Anthology (ed. by E. Sober ), pp. 235–251. MIT Press, Cambridge, Massachusetts, U.S.A.

    Google Scholar 

  • Lewontin, R.C. 1981. On constraint and adaptation. Behavioural and Brain Sciences, 4: 244–245.

    Google Scholar 

  • Lewontin, R.C. 1982. Organism and environment. In: Learning, Development and Culture: Essays in Evolutionary Epistemology (ed. by H.C. Plotkin ) pp. 151–170. John Wiley and Sons, Chichester, U.K.

    Google Scholar 

  • Lewontin, R.C. 1983. Gene, organism and environment. In: Evolution From Molecules to Men (ed. by D.S. Bendall ), pp. 273–285. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Li, C.C. 1955. The stability of an equilibrium and the average fitness of a population. American Naturalist, 89: 281–295.

    Google Scholar 

  • Lima, S.L. 1983. Downy woodpecker foraging behavior: foraging by expectation and energy intake rate. Oecologia, 58: 232–237.

    Google Scholar 

  • Lima, S.L. 1984. Downy woodpecker foraging behaviour: efficient sampling in simple stochastic environments. Ecology, 65: 166–174.

    Google Scholar 

  • Lobel, P.S., and Ogden, J.C. 1981. Foraging by the herbivorous parrot fish Sparisoma radians. Marine Biology, 64: 173–183.

    Google Scholar 

  • Lucas, J.R. 1983. The role of foraging time constraints and variable prey encounter in optimal diet choice. American Naturalist, 122: 191–209.

    Google Scholar 

  • Luthardt-Laimer, G., and Roth, G. 1983. Reduction of visual inhibition to stationary prey by early experience in Salamandra salamandra (L.). Zeitschrift fur Tierpsychologie, 63: 294–302.

    Google Scholar 

  • MacArthur, R.H. 1972. Geographical Ecology. Harper and Row, New York, New York, U.S.A.

    Google Scholar 

  • MacArthur, R.H., and Pianka, E.R. 1966. On optimal use of a patchy environment. American Naturalist, 100: 603–609.

    Google Scholar 

  • Macdonald, D.W. 1980. The red fox, Vulpes vulpes, as a predator upon earthworms, Lumbricus terrestris. Zietschrift fur Tierpsycologie, 52: 171–200.

    Google Scholar 

  • Magnhagen, C., and Wiederholm, A.M. 1982. Food selectivity versus prey availability - a study using the marine fish Pomatoschistus microps. Oecologia, 55: 311–315.

    Google Scholar 

  • Marden, J.H. 1984. Remote perception of floral nectar by bumblebees. Oecologia, 64: 232–240.

    Google Scholar 

  • Marden, J.H., and Waddington, K.D. 1981. Floral choices by honeybees in relation to the relative distances to flowers. Physiological Entomology, 6: 431–435.

    Google Scholar 

  • Markowitz, H. 1959. Portfolio Selection: Efficient Diversification of Investments. Wiley, New York, New York, U.S.A.

    Google Scholar 

  • Marks, J.S., and Marti, C.D. 1984. Feeding Ecology of sympatric barn owls and long-eared owls in Ikaho. Ornis Scandinavica, 15: 135–143.

    Google Scholar 

  • Marten, G.C. 1973. An optimization equation for predation. Ecology, 54: 92–101.

    Google Scholar 

  • Martindale, S. 1982. Nest defense and central place foraging: a model and experiment. Behavioural Ecology and Sociobiology, 10: 85–90.

    Google Scholar 

  • Martindale, S. 1983. Foraging patterns of nesting Gila Woodpeckers. Ecology, 64: 888–898.

    Google Scholar 

  • Marx, K. 1934. The Eighteenth Brumaire of Louis Bonaparte. (Translated from the German, seventh printing, 1977 ). Progress Publishers, Moscow, U.S.S.R.

    Google Scholar 

  • Mattson, W.J., Jr. 1980. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics, 11: 119–161.

    Google Scholar 

  • Maynard Smith, J. 1966. The Theory of Evolution. Second edition. Penguin Books, Harmondsworth, Middlesex, U.K.

    Google Scholar 

  • Maynard Smith, J. 1978. Optimization theory in evolution. Annual Review of Ecology and Systematics, 9: 31–56.

    Google Scholar 

  • Maynard Smith, J. 1984. Game theory and the evolution of behaviour. Behavioural and Brain Sciences, 7: 95–125.

    Google Scholar 

  • Mayr, E. 1975. The unity of the genotype. Biologisches Zentralblatt, 94: 377–388.

    Google Scholar 

  • Mayr, E. 1982. The Growth of Biological Thought: Diversity, Evolution and Inheritance. Belknap Press, Harvard University, Cambridge, Massachusetts, U.S.A.

    Google Scholar 

  • Mayr, E. 1983. How to carry out the adaptationist program? American Naturalist, 121: 324–334.

    Google Scholar 

  • Mazur, J.E. 1981. Optimization theory fails to predict performance of pigeons in a two-response situation. Science, 214: 823–825.

    PubMed  CAS  Google Scholar 

  • Mazur, J.E. 1983. Reply to Staddon and Hinson. Science, 221: 977.

    PubMed  CAS  Google Scholar 

  • McCleery, R.H. 1978. Optimal behaviour sequences. In: Behavioural Ecology: An Evolutionary Approach, Second edition (ed. by J.R. Krebs & N.B. Davies ), pp. 377–410. Blackwell Scientific Publications, Oxford, U.K.

    Google Scholar 

  • McClintock, J.B., and Lawrence, J.M. 1981. An optimization study on the feeding behaviour of Luidia clathrata Say (Echinodermata:Asteroidea). Marine Behavioral Physiology, 7: 263–275.

    Google Scholar 

  • McFarland, D.J., and Houston, A.I. 1981. Quantitative Ethology - The State Space Approach. Pitman Publishing, Boston, Massachusetts, U.S.A.

    Google Scholar 

  • McNair, J.N. 1979. A generalized model of optimal diets. Theoretical Population Biology, 15: 159–170.

    Google Scholar 

  • McNair, J.N. 1981. A stochastic foraging model with predator training effects. II. Optimal diets. Theoretical Population Biology, 19: 147–162.

    Google Scholar 

  • McNair, J.N. 1982. Optimal giving-up times and the marginal value theorem. American Naturalist, 119: 511–529.

    Google Scholar 

  • McNair, J.N. 1983. A class of patch - use strategies. American Zoologist, 23: 303–313.

    Google Scholar 

  • McNamara, J. 1982. Optimal patch use in a stochastic environment. Theoretical Population Biology, 21: 269–288.

    Google Scholar 

  • McNamara, J., and Houston, A.I. 1980. The application of statistical decision theory to Animal Behaviour. Journal of Theoretical Biology, 85: 673–690.

    PubMed  CAS  Google Scholar 

  • McNamara, J., and Houston, A.I. 1982. Short-term behavior and lifetime fitness. In: Functional Ontogeny (ed. by D.J. McFarland ), pp. 60–87. Pitman Books, London, U.K.

    Google Scholar 

  • McSweeney, F.K. 1975. Concurrent schedule responding as a function of body weight. Animal Learning and Behaviour, 3: 264–270.

    Google Scholar 

  • Mellgren, R.L. 1982. Foraging in a simulated natural environment: there’s a rat loose in the lab. Journal of the Experimental Analysis of Behavior, 38: 93–100.

    PubMed  CAS  Google Scholar 

  • Menzel, E.W., and Wyers, E.J. 1981. Cognitive aspects of foraging behavior. In: Foraging Behavior: Ecological, Ethological and Psychological Approaches (ed. by A.C. Kamil & T.D. Sargent ), pp. 355–377. Garland STPM Press, New York, New York, U.S.A.

    Google Scholar 

  • Metcalfe, N.B., and Furness, R.W. 1984. Changing priorities: the effect of pre-migratory fattening on the trade-off between foraging and vigilance. Behavioural Ecology and Sociobiology, 15: 203–206.

    Google Scholar 

  • Meyerriecks, A.J. 1959. Foot-stirring feeding behaviour in herons. Wilson Bulletin, 71: 153–158.

    Google Scholar 

  • Meyerriecks, A.J. 1966. Additional observations on “foot stirring” feeding behaviour in herons. Auk, 83: 471–472.

    Google Scholar 

  • Meyerriecks, A.J. 1971. Further observations on the use of the feet by foraging herons. Wilson Bulletin, 83: 435–438.

    Google Scholar 

  • Michod, R.E. 1984. Constraints on adaptation, with special reference to social behaviour. In: A New Ecology: Novel Approaches to Interactive Systems (ed. by P.W. Price, C.N. Slobodchikoff, & W.S. Gaud ), pp. 253–278. Wiley, New York, New York, U.S.A.

    Google Scholar 

  • Milinski, M. 1979. Evolutionarily stable feeding strategy in sticklebacks. Zietschrift fur Tierpsychologie, 51: 36–40.

    Google Scholar 

  • Milinski, M. 1982. Optimal foraging: the influence of intraspecific competition of diet selection. Behavioral Ecology and Sociobiology, 11: 109–115.

    Google Scholar 

  • Milinski, M. 1984a. Competitive resource sharing: an experimental test of a learning rule for ESSs. Animal Behaviour, 32: 233–242.

    Google Scholar 

  • Milinski, M. 1984b. A predator’s costs of overcoming the confusion-effect of swarming prey. Animal Behaviour, 32: 1157–1162.

    Google Scholar 

  • Milinski, M. 1984c. Parasites determine a predator’s optimal feeding strategy. Behavioural Ecology and Sociobiology, 15: 35–37.

    Google Scholar 

  • Milinski, M., and Heller, R. 1978. Influence of a predator on the optimal foraging behaviour of sticklebacks (Gasterostrus aculeatus L.). Nature, 275: 642–644.

    Google Scholar 

  • Miller, H.L., Jr., and Loveland, D.H. 1974. Matching when the number of response alternatives is large. Animal Learning Behavior, 2: 106–110.

    Google Scholar 

  • Miller, M.R. 1975. Gut morphology of mallards in relation to diet quality. Journal of Wildlife Management, 39: 168–173.

    Google Scholar 

  • Mills, S.K., and Beatty, J.H. 1979. The propensity interpretation of fitness. Philosophy of Science, 46: 263–286.

    Google Scholar 

  • Mitchell, R. 1981. Insect behaviour, resource exploitation and fitness. Annual Review of Entomology, 26: 373–396.

    Google Scholar 

  • Mittelbach, G.G. 1981. Foraging efficiency and body size: a study of optimal diet and habitat use by bluegills. Ecology, 62: 1370–1386.

    Google Scholar 

  • Mittelbach, G.G. 1983. Optimal foraging and growth in bluegills. Oecologia, 59: 157–162.

    Google Scholar 

  • Moermond, T., and Denslow, J.S. 1983. Fruit choice in neotropical birds: effects of fruit type and accessibility on selectivity. Journal of Animal Ecology, 52: 407–420.

    Google Scholar 

  • Moller, H. 1983. Foraging Strategies of Red Squirrels (Sciurus vulgaris L.) in Scots Pine (Pinus sylvestris L.) Plantation. Ph.D. Thesis, University of Aberdeen, Aberdeen, U.K.

    Google Scholar 

  • Monod, J. 1972. Chance and Necessity. Collins, London, U.K.

    Google Scholar 

  • Montgomerie, R.D., Eadie, J. McA., and Harder, L.D. 1984. What do foraging hummingbirds maximize? Oecologia, 63: 357–363.

    Google Scholar 

  • Moore, J.A. 1981. The effects of information networks in hunter-gatherer societies. In: Hunter-gatherer Foraging Strategies (ed. by B. Winterhalder & E.A. Smith ), pp. 194–217. University of Chicago Press, Chicago, U.S.A.

    Google Scholar 

  • Moore, P.J. 1984. Foraging and social behaviour of the white-faced heron at Pauatahanui inlet. Notornis, 31: 285–299.

    Google Scholar 

  • Moore, W.J. 1965. Masticatory function and skull growth. Journal of Zoology, 146: 123–131.

    Google Scholar 

  • Moran, P.A.P. 1964. On the non-existence of adaptive topographies. Annales of Human Genetics, London, 27: 383–393.

    CAS  Google Scholar 

  • Moray, N., and Connolly, K. 1963. A possible case of genetic assimilation of behavior. Nature, 199: 358–360.

    Google Scholar 

  • Moreno, J. 1984. Search strategies of wheatears (Oenanthe oenanthe) and stonechats (Saxicola torquata): adaptive variation in perch height, search time, sally distance and inter-perch move length. Journal of Animal Ecology, 53: 147–159.

    Google Scholar 

  • Morrison, D.W. 1978. On the optimal searching strategy for refuging predators. American Naturalist, 112: 925–934.

    Google Scholar 

  • Morse, D.H. 1980. Behavioural Mechanisms in Ecology. Harvard University Press, Cambridge, Massachusetts, U.S.A.

    Google Scholar 

  • Munger, J.C. 1984. Optimal foraging? Patch use by horned lizards (Ignanidae: Phynosoma). American Naturalist, 123: 654–680.

    Google Scholar 

  • Myers, J.P. 1983. In: Perspectives in Ornithology (ed. by G.A. Clark & A.H. Brush), pp. 216–221. Cambridge University Press, New York, New York, U.S.A.

    Google Scholar 

  • Nadav, N. 1984. Feeding frequencies of nesting blue tits (Parsus caerulens) costs, benefits and a model of optimal feeding frequency. Oecologia, 65: 125–137.

    Google Scholar 

  • Nagy, K.A., Huey, R.B., and Bennett, A.F. 1984. Field energetics and foraging mode of kalahari lacertid lizards. Ecology, 65: 588–596.

    Google Scholar 

  • Norberg, R.A. 1977. An ecological theory on foraging time and energetics and choice of optimal food-searching method. Journal of Animal Ecology, 46: 511–529.

    Google Scholar 

  • Norberg, R.A. 1981. Optimal flight speed in birds when feeding young. Journal of Animal Ecology, 50: 473–477.

    Google Scholar 

  • Norberg, R.A. 1983. Optimal locomotion modes of foraging birds in trees. Ibis, 125: 172–180.

    Google Scholar 

  • Norton-Griffiths, M. 1968. The Feeding Behaviour of the Oystercatcher (Haematopus ostralegus). Ph.D. Thesis, Oxford University, U.K.

    Google Scholar 

  • Nudds, T.D. 1980. Forage “preference”: theoretical considerations of diet selection by deer. Journal of Wildlife Management, 44: 735–740.

    Google Scholar 

  • Nudds, T.D. 1982. Theoretical considerations of diet selection by deer: a reply. Journal of Wildlife Management, 46: 257–258.

    Google Scholar 

  • Nunez, J.A. 1982. Honeybee foraging strategies at a food source in relation to its distance from the hive and the rate of sugar flow. Journal of Apical Research, 21: 139–150.

    Google Scholar 

  • Oaten, A. 1977. Optimal foraging in patches: a case for stochasticity. Theoretical Population Biology, 12: 263–285.

    PubMed  CAS  Google Scholar 

  • O’Brien, W.J., Slade, N.A., and Vinyard, G.L. 1976. Apparent size as the determinant of prey selection by bluegill sunfish (Lepomis macrochirum). Ecology, 57: 1304–1310.

    Google Scholar 

  • O’Connell, J.F., and Hawkes, K. 1981. Alyawasa plant use and optimal foraging theory. In: Hunter-gatherer Foraging Strategies (ed. by B. Winterhalder & E.A. Smith ), pp. 99–125. University of Chicago Press, Chicago, U.S.A.

    Google Scholar 

  • O’Grady, R.T. 1984. Evolutionary theory and teleology. Journal of Theoretical Biology, 107: 563–578.

    PubMed  Google Scholar 

  • Ohguchi, O., and Aoki, K. 1983. Effects of colony need for water on optimal food choice in honeybees. Behavioural Ecology and Sociobiology, 12: 77–84.

    Google Scholar 

  • Ollason, J.G. 1980. Learning to forage - optimally? Theoretical Population Biology, 18: 44–56.

    PubMed  CAS  Google Scholar 

  • Ollason, J.G. 1983. Behavioural consequences of hunting by expectation: a simulation study of foraging tactics. Theoretical Population Biology, 23: 323–346.

    Google Scholar 

  • Orians, G. 1971. Ecological aspects of behavior. In: Avian Biology, Vol. 1 (ed. by D.S. Farner & J.R. King ), pp. 513–546. Academic Press, New York, New York, U.S.A.

    Google Scholar 

  • Orians, G.H., and Pearson, N.E. 1979. On the theory of central place foraging. In: Analysis of Ecological Systems (ed. by D.J. Horn, G.R. Stairs, & R.D. Mitchell ), pp. 154–177. Ohio State University Press, Columbus, Ohio, U.S.A.

    Google Scholar 

  • Ospovat, D. 1981. The Development of Darwin’s Theory: Natural History, Natural Theology, and Natural Selection 1838–1859. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Oster, G., and Heinrich, B. 1976. Why do bumblebees major? A mathematical model. Ecological Monographs, 46: 129–133.

    Google Scholar 

  • Oster, G.F., and Rochlin, S.M. 1979. Optimization models in evolutionary biology. Lectures in Mathematics in the Life Sciences, 11: 21–88.

    Google Scholar 

  • Oster, G.F., and Wilson, E.O. 1978. Castle and Ecology in the Social Insects. Princeton University Press, Princeton, New Jersey, U.S.A.

    Google Scholar 

  • Ostfeld, R.S. 1982. Foraging strategies and prey switching in the California sea otter. Oecologia, 53: 170–178.

    Google Scholar 

  • Owen-Smith, N., and Novellie, P. 1982. What should a clever ungulate eat? American Naturalist, 119: 151–178.

    Google Scholar 

  • Oyama, S. 1985. The Ontogeny of Information: Developmental Systems and Evolution. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Padilla, S.G. 1935. Further studies on the delayed pecking of chicks. Journal of Comparative Psychology, 20: 413–443.

    Google Scholar 

  • Palmer, A.R. 1981. Predator errors, foraging in unpredictable environments, and risk: the consequences of prey variation in handling time versus net energy. American Naturalist, 118: 908–915.

    Google Scholar 

  • Palmer, A.R. 1984. Prey selection by thaidid gastropods: some observational and experimental field tests of foraging models. Oecologia, 62: 162–172.

    Google Scholar 

  • Parker, G.A. 1978. Searching for mates. In: Behavioural Ecology: An Evolutionary Approach (ed. by J.R. Krebs & N.B. Davies ), pp. 214–244. Blackwell Scientific Publications, Oxford, U.K.

    Google Scholar 

  • Parker, G.A., and Stuart, R.A. 1976. Animal behavior as a strategy optimizer: evolution of resource assessment strategies and optimal emigration thresholds. American Naturalist, 110: 1055–1076.

    Google Scholar 

  • Pastorok, R.A. 1980. The effects of predator hunger and food abundance on prey selection by Chaoborus larvae. Limnology and Oceanography, 25: 910–921.

    Google Scholar 

  • Pastorok, R.A. 1981. Prey vulnerability and size selection by Chaoborus larvae. Ecology, 62: 1311–1324.

    Google Scholar 

  • Phillips, N.W. 1984. Compensatory intake can be consistent with an optimal foraging model. American Naturalist, 123: 867–872.

    Google Scholar 

  • Pienkowski, M.W. 1983a. Changes in the foraging pattern of plovers in relation to environmental factors. Animal Behaviour, 31: 244–264.

    Google Scholar 

  • Pienkowski, M.W. 1983b. Surface activity of some intertidal invertebrates in relation to temperature and the foraging behaviour of their shore-bird predators. Marine Ecology - Progress Series, 11: 141–150.

    Google Scholar 

  • Pirlot, P., and Bernier, R. 1973. Preliminary remarks on the organ-function relation. In: The Methodological Unity of Science (ed. by M. Bunge ), pp. 71–83. D. Reidel Publishing Company, Dordrecht, Holland.

    Google Scholar 

  • Pleasants, J.M. 1981. Bumblebee response to variation in nectar availability. Ecology, 62: 1648–1661.

    Google Scholar 

  • Plowright, R.C., and Laverty, T.M. 1984. The Ecology and sociobiology of bumblebees. Annual Review of Entomology, 29: 175–199.

    Google Scholar 

  • Polsky, R.H. 1977. The ontogeny of predatory behaviour in the golden hamster (Mesocricetus a. auratus). 1. The influence of age and experience. Behaviour, 61: 26–57.

    Google Scholar 

  • Porter, K.G., Gerritsen, J., and Orcutt, J.D., Jr. 1982. The effect of food concentration on swimming patterns, feeding behavior, ingestion, assimilation, and respiration by Daphnia. Limnology and Oceanography, 27: 935–949.

    Google Scholar 

  • Porter, K.G., Orcutt, J.D., Jr., and Gerritsen, J. 1983. Functional response and fitness in a generalist filter feeder, Daphnia magna (Cladocera: Crustacea). Ecology, 64: 735–742.

    Google Scholar 

  • Power, M.E. 1984. Habitat quality and the distribution of algae-grazing catfish in a Panamanian stream. Journal of Animal Ecology, 53: 357–374.

    Google Scholar 

  • Pratt, J.W. 1964. Risk aversion in the small and in the large. Econometrica, 32: 122–136.

    Google Scholar 

  • Price, M.V. 1983. Ecological consequences of body size: a model for patch choice in desert rodents. Oecologia, 59: 384–392.

    Google Scholar 

  • Price, M.V., and Heinz, K.M. 1984. Effects of body size, seed density and soil characteristics on rates of seed harvest by heteromyid rodents. Oecologia, 61: 420–425.

    Google Scholar 

  • Pubols, B.H. 1962. Constant versus variable delay of reinforcement. Journal of Comparative Physiology and Psychology, 55: 52–56.

    Google Scholar 

  • Pulliam, H.R. 1974. On the theory of optimal diets. American Naturalist, 108: 59–75.

    Google Scholar 

  • Pulliam, H.R. 1975. Diet optimization with nutrient constraints. American Naturalist, 109: 765–769.

    Google Scholar 

  • Pulliam, H.R. 1976. The principle of optimal behaviour and the theory of communities. In: Perspectives in Ethology, Volume 2 (ed. by P.P.G. Bateson & P.H. Klopfer ), pp. 311–332. Plenum Press, New York, New York, U.S.A.

    Google Scholar 

  • Pulliam, H.R. 1980a. Do chipping sparrows forage optimally? Ardea, 68: 75–82.

    Google Scholar 

  • Pulliam, H.R. 1980b. On digesting a theory. Auk, 97: 418–420.

    Google Scholar 

  • Pulliam, H.R. 1981a. Learning to forage optimally. In: Foraging Behavior: Ecological, Ethological and Psychological Approaches (ed. by A.C. Kamil & T.D. Sargent ), pp. 379–388. Garland STPM Press, New York, New York, U.S.A.

    Google Scholar 

  • Pulliam, H.R. 1981b. Optimal management of optimal foragers. In: Renewable Resource Management (ed. by T.J. Vincent & J.M. Skowronski ), pp. 46–53. Springer-Verlag, Berlin, West Germany.

    Google Scholar 

  • Pulliam, H.R., and Millikan. 1982. Social organization in the non-reproductive season. Avian Biology, 6: 169–197.

    Google Scholar 

  • Puttick, G.M. 1984. Foraging and activity patterns in wintering shorebirds. In: Shorebirds: Migration and Foraging Behaviour, Behaviour of Marine Animals, Volume 6 (ed. by J. Burger & B.L. Olla ), pp. 203–231. Plenum Press, New York, New York, U.S.A.

    Google Scholar 

  • Pyke, G.H. 1978a. Optimal foraging in hummingbirds: testing the marginal value theorem. American Zoologist, 18: 739–752.

    Google Scholar 

  • Pyke, G.H. 1978b. Are animals efficient harvesters? Animal Behaviour, 26: 241–250.

    Google Scholar 

  • Pyke, G.H. 1978c. Optimal foraging in bumblebees and coevolution with their plants. Oecologia, 36: 281–293.

    Google Scholar 

  • Pyke, G.H. 1978d. Optimal foraging: movement patterns of bumblebees between inflorescences. Theoretical Population Biology, 13: 72–97.

    PubMed  CAS  Google Scholar 

  • Pyke, G.H. 1979. Optimal foraging in bumblebees: rule of movement between flowers within inflorescences. Animal Behaviour, 27: 1167–1181.

    Google Scholar 

  • Pyke, G.H. 1980. Optimal foraging in bumblebees: calculation of net rate of energy intake and optimal patch choice. Theoretical Population Biology, 17: 232–246.

    PubMed  CAS  Google Scholar 

  • Pyke, G.H. 1981a. Optimal travel speeds of animals. American Naturalist, 118: 475–487.

    Google Scholar 

  • Pyke, G.H. 1981b. Why hummingbirds hover and honeyeaters perch. Animal Behaviour, 29: 861–867.

    Google Scholar 

  • Pyke, G.H. 1981c. Honeyeater foraging: a test of optimal foraging theory. Animal Behaviour, 29: 878–888.

    Google Scholar 

  • Pyke, G.H. 1981d. Optimal foraging in hummingbirds. Rule of movement between inflorescences. Animal Behaviour, 29: 889–896.

    Google Scholar 

  • Pyke, G.H. 1981e. Optimal foraging in nectar-feeding animals and coevolution with their plants. In: Foraging Behavior: Ecological, Ethological and Psychological Approaches (ed. by A.C. Kamil & T.D. Sargent ), pp. 19–38. Garland STPM Press, New York, New York, U.S.A.

    Google Scholar 

  • Pyke, G.H. 1982. Foraging in bumblebees: rules of departure from an inflorescence. Canadian Journal of Zoology, 60: 417–428.

    Google Scholar 

  • Pyke, G.H. 1983. Animal movements: an optimal foraging approach. In: The Ecology of Animal Movements (ed. by I.R. Swingland & P.J. Greenwood ), pp. 7–31. Claredon Press, Oxford, U.K.

    Google Scholar 

  • Pyke, G.H. 1984. Optimal foraging theory: a critical review. Annual Review of Ecology Systematics, 15: 523–575.

    Google Scholar 

  • Pyke, G.H., Pulliam, H.R., and Charnov, E.L. 1977. Optimal foraging: a selective review of theory and tests. Quarterly Review of Biology, 52: 137–154.

    Google Scholar 

  • Rabinowitch, V.E. 1965. The Role of Early Experience in the Development and Retention of Food Habits in Some Birds. Ph.D. Thesis, University of Wisconsin, U.S.A.

    Google Scholar 

  • Rajasilta, M., and Vuorinen, I. 1983. A field study of prey selection in planktivorous fish larvae. Oecologia, 59: 65–68.

    Google Scholar 

  • Rand, A.L. 1956. Foot-stirring as a feeding habit of wood ibis and other birds. American Midland Naturalist, 55: 96–100.

    Google Scholar 

  • Rapport, D.J. 1971. An optimization model of food selection. American Naturalist, 105: 575–586.

    Google Scholar 

  • Rapport, D.J. 1980. Optimal foraging for complementary resources. American Naturalist, 116: 324–346.

    Google Scholar 

  • Rapport, D.J. 1981. Foraging behavior of Stentor coeruleus: A microeconomic interpretation. In: Foraging Behavior: Ecological, Ethological and Psychological Approaches (ed. by A.C. Kamil & T.D. Sargent ), pp. 77–93. Garland STPM Press, New York, New York, U.S.A.

    Google Scholar 

  • Rapport, D.J., and Turner, J.E. 1977. Economic models in Ecology. Science, 195: 367–373.

    PubMed  CAS  Google Scholar 

  • Real, L.A. 1980a. Fitness, uncertainty, and the role of diversification in evolution and behavior. American Naturalist, 115: 623–638.

    Google Scholar 

  • Real, L. 1980b. On uncertainty and the law of diminishing returns in evolution and behavior. In: Limits to Action: The Allocation of Individual Behavior (ed. by J.E.R. Staddon ), pp. 37–64. Academic Press, New York, New York, U.S.A.

    Google Scholar 

  • Real, L. 1981. Uncertainty and pollinator-plant interactions. The foraging behaviour of bees and wasps on artificial flowers. Ecology, 62: 20–26.

    Google Scholar 

  • Real, L., Ott, J., and Silverfine, E. 1982. On the tradeoff between the mean and the variance in foraging: effect of spatial distribution and color preference. Ecology, 63: 1617–1623.

    Google Scholar 

  • Rechten, C., Avery, M., and Stevens, A. 1983. Optimal prey selection - why do great tits show partial preferences. Animal Behaviour, 31: 576–584.

    Google Scholar 

  • Rechten, C., Krebs, J.R., and Houston, A.I. 1981. Great tits and conveyor belts - a correction for non-random prey distribution. Animal Behaviour, 29: 1276–1277.

    Google Scholar 

  • Regelmann, K. 1984a. Competitive resource sharing: a simulation model. Animal Behaviour, 32: 226–232.

    Google Scholar 

  • Regelmann, K. 1984b. A remark on the theory of risk-sensitive foraging. Journal of Theoretical Biology, 110: 217–222.

    Google Scholar 

  • Reichman, O.J. 1977. Optimization of diets through food preferences by heteromyid rodents. Ecology, 58: 454–457.

    Google Scholar 

  • Reichman, O.J. 1981. Factors influencing foraging in desert rodents. In: Foraging Behavior: Ecological, Ethological and Psychological Approaches (ed. by A.C. Kamil & T.D. Sargent ), pp. 195–213. Garland STPM Press, New York, New York, U.S.A.

    Google Scholar 

  • Reidl, R. 1978. Order in Living Organisms. John Wiley and Sons, Chichester, U.K.

    Google Scholar 

  • Rice, W.R. 1983. Sensory modality: an example of its effect on optimal foraging behavior. Ecology, 64: 403–406.

    Google Scholar 

  • Richards, L.J. 1982. Prey selection by an intertidal beetle: field test of an optimal diet model. Oecologia, 55: 325–332.

    Google Scholar 

  • Richards, L.J. 1983. Hunger and the optimal diet. American Naturalist, 122: 326–334.

    Google Scholar 

  • Richter, C.P. 1943. Total self regulatory functions in animals and human beings. Harvey Lectures, 38: 63–103.

    Google Scholar 

  • Richter, C.P. 1953. Experimentally produced reactions to food poisoning in wild and domesticated rats. Annals of the New York Academy of Sciences, 56: 225–239.

    PubMed  CAS  Google Scholar 

  • Richter, C.P., Holt, L.E., and Barelare, B., Jr. 1937. Vitamin B craving in rats. Science, 86: 354–355.

    PubMed  CAS  Google Scholar 

  • Ringler, N.H. 1979. Selective predation by drift feeding brown trout Salmo trutta. Journal of the Fisheries Research Board of Canada, 36: 392–403.

    Google Scholar 

  • Robson, G.C., and Richards, O.W. 1936. The variation of animals in Nature. Longmans, Green and Co. London, U.K.

    Google Scholar 

  • Roitberg, B.O., and Prokopy, R.J. 1982. Influence of intertree distance on foraging behavior of Rhagoletis pomonella in the field. Ecological Entomology, 7: 437–442.

    Google Scholar 

  • Roitberg, R.D., van Lenteren, J.C., van Alphen, J.J.M., Galis, F., and Prokopy, R.J. 1982. Foraging behaviour of Rhagoletis pomonella, a parasite of hawthorn (Crataegus viridis), in Nature. Journal of Animal Ecology, 51: 307–325.

    Google Scholar 

  • Rosen, D.E. 1982. Teleostean interrelationships, morphological function and evolutionary inference. American Zoologist, 22: 2. 61–273.

    Google Scholar 

  • Rosen, D.E., and Buth, D.G. 1980. Empirical research versus neo-Darwinian speculation. Systematic Zoology, 29: 300–308.

    Google Scholar 

  • Rotenberry, J.T. 1980. Dietary relationships among shrubsteppe passerine birds: competition or opportunism in a variable environment? Ecological Monographs, 50: 93–110.

    Google Scholar 

  • Roughgarden, J. 1974. Niche width: biogeographic patterns among Anolis lizard populations. American Naturalist, 108, 29–442.

    Google Scholar 

  • Rudolph, S.G. 1982. Foraging strategies of American Kestrels during breeding. Ecology, 63: 1268–1276.

    Google Scholar 

  • Scheibling, R.E. 1981. Optimal foraging movements of Oreaster reticulatus (L.) (Echinodermata: Asteroidae). Journal of Experimental Marine Biology and Ecology, 51: 173–185.

    Google Scholar 

  • Schlüter, D. 1981. Does the theory of optimal diets apply in complex environments? American Naturalist, 118: 138–147.

    Google Scholar 

  • Schlüter, D. 1982a. Optimal foraging in bats: some comments. American Naturalist, 119: 121–125.

    Google Scholar 

  • Schlüter, D. 1982b. Seed and patch selection by Galapagos ground finches: relating to foraging efficiency and food supply. Ecology, 63: 1106–1120.

    Google Scholar 

  • Schmid-Hempel, P. 1984. The importance of handling time for the flight directionality in bees. Behavioural Ecology and Sociobiology, 15: 303–309.

    Google Scholar 

  • Schneider, K.J. 1984. Dominance, predation, and optimal foraging in white-throated sparrow flocks. Ecology, 65: 1820–1827.

    Google Scholar 

  • Schneiria, T.C. 1956. The interrelationships of the “innate” and the “acquired” in instinctive behaviour. In: L’Instinct dans le Comportement des Animaux et de L’homme (ed. by P.P. Grasse ), pp. 387–452. Masson, Paris, France.

    Google Scholar 

  • Schneirla, T.C. 1957. The concept of development in comparative psychology. In: The Concept of Development (ed. by D.B. Harris ), pp. 78–108. University of Minnesota Press, Minneapolis, U.S.A.

    Google Scholar 

  • Schneirla, T.C. 1965. Aspects of stimulation and organization in approach/withdrawal processes underlying vertebrate behavioural development. In: Advances in the Study of Behaviour, Volume I (ed. by D.S. Lehrman ), pp. 1–71. Academic Press, New York, New York, U.S.A.

    Google Scholar 

  • Schoener, T.W. 1971. Theory of feeding strategies. Annual Review of Ecology and Systematics, 11: 369–404.

    Google Scholar 

  • Schoener, T.W. 1979. Generality of the size-distance relation in models of optimal feeding. American Naturalist, 114: 902–914.

    Google Scholar 

  • Sibly, R.M., and McCleery, R.H. 1983. The distribution between feeding sites of herring gulls breeding at Walney Island, U.K. Journal of Animal Ecology, 52: 50–63.

    Google Scholar 

  • Sih, A. 1977. Optimal foraging theory used to deduce the energy available in the environment. Biotropica, 9: 216.

    Google Scholar 

  • Sih, A. 1979. Optimal diet: the relative importance of the parameters. American Naturalist, 113: 460–463.

    Google Scholar 

  • Sih, A. 1980a. Optimal foraging: partial consumption of prey. American Naturalist, 116: 281–290.

    Google Scholar 

  • Sih, A. 1980b. Optimal behaviour: can foragers balance two conflicting demands? Science, 210: 1041–1043.

    PubMed  CAS  Google Scholar 

  • Sih, A. 1982. Optimal patch use: variation in selective pressure for efficient foraging. American Naturalist, 120: 666–685.

    Google Scholar 

  • Sih, A. 1984. Optimal behaviour and density-dependent predation. American Naturalist, 123: 314–326.

    Google Scholar 

  • Sinha, C. 1984. A socio-naturalistic approach to human development. In: Beyond Neo-Darwinism: An Introduction to the New Evolutionary Paradigm (ed. by M.W. Ho & P.T. Saunders ), pp. 331–362. Academic Press, London, U.K.

    Google Scholar 

  • Sites, J.W., Jr. 1978. The foraging strategy of the dusky salamander, Desmognathus fuscus (Amphibia, Urodela, Plethodontidae): An empirical approach to predation theory. Journal of Herpetology, 12: 373–383.

    Google Scholar 

  • Slatkin, M. 1978. On the equilibration of fitness by natural selection. American Naturalist, 112: 845–859.

    Google Scholar 

  • Smith, E.A. 1981. The application of optimal foraging theory to the analysis of hunter-gatherer group size. In: Hunter-gatherer Foraging Strategies (ed. by B. Winterhaider & E.A. Smith ), pp. 36–65. University of Chicago Press, Chicago, U.S.A.

    Google Scholar 

  • Smith, J.N.M. 1974. The food searching behavior of two European thrushes. II. The adaptiveness of the search patterns. Behaviour, 49: 1–61.

    Google Scholar 

  • Smith, J.N.M., and Dawkins, R. 1971. The hunting behaviour of individual great tits in relation to spatial variations in their food density. Animal Behaviour, 19: 695–706.

    Google Scholar 

  • Smith, J.N.M., Grant, P.R., Grant, B.R., Abbot, I.J., and Abbot, L.K. 1978. Seasonal variation in feeding habits of Darwin’s ground finches. Ecology, 59: 1137–1150.

    Google Scholar 

  • Smith, J.P., Maybee, J.S., and Maybee, F.M. 1979. Effects of increasing distance to food and deprivation level on food hoarding in Rattus norvegicus. Behavioural Neural Biology, 27: 302–318.

    CAS  Google Scholar 

  • Smith, J.N.M., and Sweatman, H.P.A. 1974. Food searching behaviour of tit mice in patchy environments. Ecology, 55: 1216–1232.

    Google Scholar 

  • Smith, W.H. 1965. Observations on the flora of the alimentary tract of animals and factors affecting its composition. Journal of Pathology and Bacteriology, 89: 95–122.

    PubMed  CAS  Google Scholar 

  • Staddon, J.E.R. 1980. Optimality analyses of operant behavior and relation to optimal foraging. In: Limits to Action: The Allocation of Individual Behaviour (ed. by J.E.R. Staddon ), pp. 101–141. Academic Press, New York, U.S.A.

    Google Scholar 

  • Staddon, J.E.R., and Gendron, R.P. 1983. Optimal detection of cryptic prey may lead to predator switching. American Naturalist, 122: 843–848.

    Google Scholar 

  • Staddon, J.E.R., and Hinson, J.M. 1983. Optimization: a result or a mechanism? Science, 221: 976–977.

    PubMed  CAS  Google Scholar 

  • Stamp, N.E. 1982. Searching behaviour of parasitoids for web-making caterpillars: a test of optimal searching theory. Journal of Animal Ecology, 51: 387–395.

    Google Scholar 

  • Stamps, J., Tanaka, S., and Krishman, V.V. 1981. The relationship between selectivity and food abundance in a juvenile lizard. Ecology, 62: 1079–1092.

    Google Scholar 

  • Stanton, M.L. 1982. Searching in a patchy environment: Foodplant selection by Colias periphyle butterflies. Ecology, 53: 839–853.

    Google Scholar 

  • Stanton, M.L. 1984. Short-term learning and the searching accuracy of egg-laying butterflies. Animal Behaviour, 32: 33–40.

    Google Scholar 

  • Stapanian, M.A., and Smith, C.C. 1978. A model for seed scatterhoarding: coevolution of fox squirrels and black walnuts. Ecology, 59: 884–896.

    Google Scholar 

  • Stearns, S.C. 1982. On fitness. In: Environmental Adaptation and Evolution (ed. by D. Mossakowski & G. Roth ), pp. 3 - 17. Gustav Fischer, Stuttgart, Germany.

    Google Scholar 

  • Stein, R.A. 1977. Selective predation, optimal foraging, and the predator-prey interaction between fish and crayfish. Ecology, 58: 1237–1253.

    Google Scholar 

  • Stein, R.A., Goodman, C.A., and Marschall, E.A. 1984. Using time and energetic measures of cost in estimating prey value for fish predators. Ecology, 65: 702–715.

    Google Scholar 

  • Stenseth, N.C. 1981. Optimal food selection: some further considerations with special reference to the grazer-hunter distinction. American Naturalist, 117: 457–475.

    Google Scholar 

  • Stenseth, N.C. 1984. Evolutionary stable strategies in food selection models with fitness sets. Journal of Theoretical Biology, 109: 489–499.

    PubMed  CAS  Google Scholar 

  • Stenseth, N.C., and Hansson, L. 1979. Optimal food selection: a graphic model. American Naturalist, 113: 373–389.

    Google Scholar 

  • Stenseth, N.C., Hansson, L., and Myllymaki, A. 1977. Food selection of the field vole Microtus agrestis. Oikos, 29: 511–524.

    Google Scholar 

  • Stephens, D.W. 1981. The logic of risk-sensitive foraging preferences. Animal Behaviour, 29: 628–629.

    Google Scholar 

  • Stephens, D.W. 1985. How important are partial preferences? Animal Behaviour, 33: 667–669.

    Google Scholar 

  • Stephens, D.W., and Charnov, E.L. 1982. Optimal foraging: some simple stochastic models. Behavioural Ecology and Sociobiology, 10: 251–263.

    Google Scholar 

  • Stewart-Oaten, A. 1982. Minimax strategies for a predatory-prey game. Theoretical Population Biology, 22: 410–424.

    Google Scholar 

  • Strong, D.R., Lawton, J.H., and Southwood, R. 1984. Insects on Plants. Blackwell Scientific Publication, Oxford, U.K.

    Google Scholar 

  • Sutherland, W.J. 1982a. Do oystercatchers select the most profitable cockles? Animal Behaviour, 30:–861.

    Google Scholar 

  • Sutherland, W.J. 1982b. Spatial variation in the predation of cockles by Oystercatchers at Traeth Melynog, Anglessey II. The pattern of mortality. Journal of Animal Ecology, 51: 491–500.

    Google Scholar 

  • Sutherland, W.J. 1983. Aggregation and the “ideal free” distribution. Journal of Animal Ecology, 52: 821–828.

    Google Scholar 

  • Taghon, G.L. 1981. Beyond selection: optimal ingestion rate as a function of food value. American Naturalist, 118: 202–214.

    Google Scholar 

  • Taghon, G.L. 1982. Optimal foraging by deposit feeding invertebrates - roles of particle size and organic coating. Oecologia, 52: 295–304.

    Google Scholar 

  • Taghon, G.L., and Jumars, P.A. 1984. Variable ingestion rate and its role in optimal foraging behavior of marine deposit feeders. Ecology, 65: 549–558.

    Google Scholar 

  • Taghon, G.L., Self, R.F.L., and Jumars, P.A. 1978. Predicting particle selection by deposit feeders: a model and its implications. Limnology and Oceanography, 23: 752–759.

    Google Scholar 

  • Taylor, F. 1977. Foraging behavior of ants: experiments with two species of Myrmecine ants. Behavioral Ecology and Sociobiology, 2: 147–167.

    Google Scholar 

  • Taylor, R.J. 1984. Foraging in the eastern grey kangaroo and the wallaroo. Journal of Animal Ecology, 53: 65–74.

    Google Scholar 

  • Templeton, A.R., and Lawlor, L.R. 1981. The fallacy of the averages in ecological optimization theory. American Naturalist, 117: 390–393.

    Google Scholar 

  • Tepedino, V.J., and Parker, F.D. 1982. Interspecific differences in the relative importance of pollen and nectar to bee species foraging on sunflowers. Environmental Entomology, 11: 246–250.

    Google Scholar 

  • Terriere, L.C. 1984. Induction of detoxication enzymes in insects. Annual Review of Entomology, 29: 71–88.

    PubMed  CAS  Google Scholar 

  • Thompson, D.B.A., and Barnard, C.J. 1984. Prey selection by plovers: optimal foraging in mixed-species groups. Animal Behaviour, 32: 554–563.

    Google Scholar 

  • Tinbergen, J.M. 1976. How starlings (Strurnus vulgaris L.) apportion their foraging time in a virtual single-prey situation on a meadow. Ardea, 64: 155–170.

    Google Scholar 

  • Tinbergen, J.M. 1981. Foraging decisions in starlings (Sturnus vulgaris L.). Ardea, 69: 1–67.

    Google Scholar 

  • Tinbergen, L. 1960. The natural control of insects in pinewoods. I. Factors influencing the intensity of predation by songbirds. Archives Neerlandaises de Zoologie, 13: 265–343.

    Google Scholar 

  • Tinbergen, N. 1962. Foot-paddling in gulls. British Birds, 55: 117–119.

    Google Scholar 

  • Tinbergen, N., Broekhuysen, G.J., Feekes, F., Houghton, J.C.W., Kruuk, H., and Szulc, E. 1962. Egg shell removal by the black headed gull, Larus ridibundus L.: a behaviour component of camouflage. Behaviour, 19: 74–117.

    Google Scholar 

  • Townsend, C.R., and Hildrew, A.G. 1980. Foraging in a patchy environment by a predatory net-spinning caddis larva - a test of optimal foraging theory. Oceologia, 47: 219–221.

    Google Scholar 

  • Townsend, C.R., and Hughes, R.N. 1981. Maximizing net energy returns from foraging. In: Physiological Ecology: An Evolutionary Approach to Resource Use (ed. by C.R. Townsend & P. Calow ), pp. 86–108. Sinauer Associates, Sunderland, Massachusetts, U.S.A.

    Google Scholar 

  • Traniello, J.F.A., Fujita, M.S., and Bowen, R.V. 1984. Ant foraging behaviour: ambient temperature influences prey selection. Behavioural Ecology and Sociobiology, 15: 65–68.

    Google Scholar 

  • Travis, J. 1982. A method for the statistical analysis of time-energy budgets. Ecology, 63: 19–25.

    Google Scholar 

  • Tsumori, A. 1967. New acquired behaviour and social interactions of Japanese monkeys. In: Social Communication Among Primates (ed. by S.A. Altman ), pp. 207–219. University of Chicago Press, Chicago, U.S.A.

    Google Scholar 

  • Tsumori, A., Kawai, M., and Motoyoshi, R. 1965. Delayed response of wild Japanese monkeys by the sand-digging method: 1, case of the Koshima troop. Primates, 6: 195–212.

    Google Scholar 

  • Tullock, G. 1970. Switching in general predators: a comment. Ecological Society of America, Bulletin, 51: 21–23.

    Google Scholar 

  • Tullock, G. 1971. The coal tit as a careful shopper. American Naturalist, 105: 77–80.

    Google Scholar 

  • Turelli, M., Gillespie, J.H., and Schoener, T.W. 1982. The fallacy of the fallacy of the averages in ecological optimization. American Naturalist, 119: 879–884.

    Google Scholar 

  • Turner, A.K. 1982. Optimal foraging by the swallow (Hirundo rustica L.) prey size selection. Animal Behaviour, 30: 862–872.

    Google Scholar 

  • Turner, J.R.G. 1969. The basic theorems of natural selection: a naive approach. Heredity, 24: 75–84.

    PubMed  CAS  Google Scholar 

  • Unger, P.A., and Lewis, W.M. 1983. Selective predation with respect to body size in a population of the fish Xeromelaniris venezuelae (Atherinidae). Ecology, 64: 1136–1144.

    Google Scholar 

  • Vadas, R.L. 1977. Preferential feeding - optimization strategy in sea urchins. Ecological Monographs, 47: 337–371.

    Google Scholar 

  • Vaughan, W. 1981. Melioration, matching and maximization. Journal of the Experimental Analysis of Behaviour, 36: 141–149.

    CAS  Google Scholar 

  • Vaughan, W., Jr., and Herrnstein, R.J. In press. In: Advances in Behavioural Economics, Volume (ed. by L. Green & J. Kagel). Ablex, Norwood, New Jersey, U.S.A.

    Google Scholar 

  • Vickery, W.L. 1984. Optimal diet models and rodent food consumption. Animal Behaviour, 32: 340–348.

    Google Scholar 

  • Visser, M. 1981. Prediction of switching and counter-switching based on optimal foraging. Zeitschrift fur Tierpsychologie, 55: 129–138.

    Google Scholar 

  • Visser, M. 1982. Prey selection by the 3-spined stickleback (Gasterosteus aculeatus L.). Oecologia, 55: 395–402.

    Google Scholar 

  • Waage, J.K. 1979. Foraging for patchily-distributed hosts by the parasitoid Nemeritis canescens. Journal of Animal Ecology, 48: 353–371.

    Google Scholar 

  • Waddington, C.H. 1954. The integration of gene-controlled processes and its bearing on evolution. Caryologia, Supplement to Volume 6, 232–245.

    Google Scholar 

  • Waddington, C.H. 1957. The Strategy of the Genes. Allen and Unwin, London, U.K.

    Google Scholar 

  • Waddington, C.H. 1975. The Evolution of an Evolutionist. Cornell University Press, Ithaca, New York, U.S.A.

    Google Scholar 

  • Waddington, C.H. 1977. Tools For Thought. Jonathan Cape, London, U.K.

    Google Scholar 

  • Waddington, K.D. 1982. Optimal diet theory: sequential and simultaneous encounter models. Oikos, 39: 278–280.

    Google Scholar 

  • Waddington, K.D., Allen, T., and Heinrich, B. 1981. Floral preferences of bumblebees (Bombus edwardsii) in relation to intermittent versus continuous rewards. Animal Behaviour, 29: 779–784.

    Google Scholar 

  • Waddington, K.D., and Heinrich, B. 1979. The foraging movements of bumblebees on vertical “inflorescenses”: an experimental analysis. Journal of Comparative Physiology, 134: 113–117.

    Google Scholar 

  • Waddington, K.D., and Heinrich, B. 1981. Patterns of movement and floral choice in foraging bees. In: Foraging.Behavior: Ecological, Ethological and Psychological Approaches (ed. by A.C. Kamil & T.D. Sargent ), pp. 215–230. Garland STPM Press, New York, New York, U.S.A.

    Google Scholar 

  • Waddington, K.D., and Holden, L.R. 1979. Optimal foraging: on flower selection by bees. American Naturalist, 114: 179–196.

    Google Scholar 

  • Wainwright, S.A., Biggs, W.D., Curry, J.D., and Gosline, J.M. 1976. Mechanical Design in Organisms. Edward Arnold, London, U.K.

    Google Scholar 

  • Walde, S.J., and Davies, R.W. 1984. The effect of intraspecific interference on Kogotus nonus (Plecoptera) foraging behaviour. Canadian Journal of Zoology, 62: 2221–2226.

    Google Scholar 

  • Wankowski, J.W.J. 1979. Morphological limitations, prey size selectivity, and growth response in juvenile Atlantic salmon, Salmo salar. Journal of Fish Biology, 14: 89–100.

    Google Scholar 

  • Watanabe, J.M. 1984. Food preference, food quality and diets of three herbivorous gastropods (Trochidae: Tegula) in a temperate kelp forest habitat. Oecologia, 62: 47–52.

    Google Scholar 

  • Webster, G., and Goodwin, B.C. 1982. The origin of species: a structuralist approach. Journal of Social and Biological Structure, 5: 15–47.

    Google Scholar 

  • Weigl, P.D., and Hanson, E.V. 1980. Observational learning and the feeding behaviour of the red squirrel Tamiasciurus hudsonicus: the ontogeny of optimization. Ecology, 61: 213–218.

    Google Scholar 

  • Weihs, D. 1975. An optimum swimming speed of fish based on feeding efficiency. Israel Journal of Technology, 13: 163–169.

    Google Scholar 

  • Weis, A.E. 1983. Patterns of parasitism by Torymus capite on hosts distributed in small patches. Journal of Animal Ecology, 52: 867–877.

    Google Scholar 

  • Wells, H., and Wells, P.H. 1983. Honey bee foraging Ecology: Optimal diet, minimal uncertainty, or individual constancy? Journal of Animal Ecology, 52: 829–836.

    Google Scholar 

  • Werner, E.E. 1974. The fish size, prey size, handling time relation in several sunfish and some implications. Journal of the Fisheries Research Board of Canada, 31: 1531–1536.

    Google Scholar 

  • Werner, E.E. 1977. Species packing and niche complementarity in three sunfishes. American Naturalist, 111: 553–578.

    Google Scholar 

  • Werner, E.E., Gilliam, J.F., Hall, D.J., and Mittelbach, G.G. 1983. An experimental test of the effects of predation risk on habitat use in fish. Ecology, 64: 1540–1548.

    Google Scholar 

  • Werner, E.E., and Hall, D.J. 1974. Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology, 55: 1042–1052.

    Google Scholar 

  • Werner, E.E., and Mittelbach. 1981. Optimal foraging: field tests of diet choice and habitat switching. American Zoologist, 21: 813–829.

    Google Scholar 

  • Werner, E.E., Mittelbach, G.G., and Hall, D.J. 1981. The role of foraging profitability and experience in habitat use by the bluegill sunfish. Ecology, 62: 116–125.

    Google Scholar 

  • Werner, E.E., Mittelbach, G.G., Hall, D.J., and Gilliam, J.F. 1983. Experimental tests of optimal habitat use in fish: the role of relative habitat profitability. Ecology, 64: 1525–1539.

    Google Scholar 

  • Westoby, M. 1974. An analysis of diet selection by large generalist herbivores. American Naturalist, 108: 290–304.

    Google Scholar 

  • Westoby, M. 1978. What are the biological bases of varied diets? American Naturalist, 112: 627–631.

    Google Scholar 

  • Whitham, T.G. 1977. Coevolution of foraging in Bombus and nectar dispensing in Chilopsis. A last dreg theory. Science, 197: 593–596.

    PubMed  CAS  Google Scholar 

  • Whitham, T.G. 1980. The theory of habitat selection: examined and extended using Pemphigus aphids. American Naturalist, 115: 449–466.

    Google Scholar 

  • Wiens, J.A. 1977. On competition and variable environments. American Scientist, 65: 590–597.

    Google Scholar 

  • Wiens, J.A. 1984. On understanding a non-equilibrium world: Myth and reality in community patterns and processes. In: Ecological Communities: Conceptual Issues and the Evidence (ed. by D.R. Strong, D. Simberloff, L.G. Abek, & A.B. Thistle ), pp. 439–457. Princeton University Press, Princeton, New Jersey, U.S.A.

    Google Scholar 

  • Wilson, D.S. 1976. Deducing the energy available in the environment: an application of optimal foraging theory. Biotropica, 8: 96–103.

    Google Scholar 

  • Wilson, D.S., and Hedrick, A. 1982. Speciation and the economics of mate choice. Evolutionary Theory, 6: 15–24.

    Google Scholar 

  • Wilson, E.O. 1980a. Caste and division of labor in leaf-cutter ants (Hymenoptera: formicidae: Atta) 1. The overall pattern in A. sedens. Behavioral Ecology and Sociobiology, 7: 143–156.

    Google Scholar 

  • Wilson, E.O. 1980b. Caste and division of labour in leaf-cutter ants (Hymenoptera: formicidae: Atta) 11. The ergonic optimization of leaf cutting. Behavioral Ecology and Sociobiology, 7: 157–165.

    Google Scholar 

  • Willson, M.F. 1971. Seed selection in some North American finches. Condor, 73: 415–427.

    Google Scholar 

  • Winterhaider, B. 1981a. Optimal foraging strategies and hunter-gather research in Anthropology: Theory and models. In: Hunter-gatherer Foraging Strategies (ed. by B. Winterhaider & E.A. Smith ), pp. 13–35. University of Chicago Press, Chicago, U.S.A.

    Google Scholar 

  • Winterhaider, B. 1981b. Foraging strategies in the boreal forest: an analysis of Cree hunting and gathering. In: Hunter-gatherer Foraging Strategies (ed. by B. Winterhaider & E.A. Smith ), pp. 66–98. University of Chicago Press, Chicago, U.S.A.

    Google Scholar 

  • Winterhaider, B. 1983. Opportunity-cost foraging models for stationary and mobile predators. American Naturalist, 122: 73–84.

    Google Scholar 

  • Winterhaider, B., and Smith, E.A. 1981. Hunter-gather Foraging Strategies. University of Chicago Press, Chicago, U.S.A.

    Google Scholar 

  • Wolf, L.L., and Hainsworth, F.R. 1983. Economics of foraging strategies in sunbirds and hummingbirds. In: Behavioural Energetics: the Cost of Survival in Vertebrates (ed. by W.P. Aspey & S.I. Lustick ), pp. 223–264 ). Ohio State University Press, Columbus, Ohio, U.S.A.

    Google Scholar 

  • Ydenburg, R.C. 1984. Great tits and giving-up times: decision rules for leaving patches. Behaviour, 90: 1–24.

    Google Scholar 

  • Yesner, D.R. 1981. Archeological applications of optimal foraging theory: harvest strategies of Aleut hunter-gatherers. In: Hunter-gatherer Foraging Strategies (ed. by B. Winterhaider & E.A. Smith ), pp. 148–170. University of Chicago Press, Chicago, U.S.A.

    Google Scholar 

  • Young, P.T. 1948. Appetite, palatability and feeding habit: a critical review. Psychological Bulletin, 45: 289–320.

    PubMed  CAS  Google Scholar 

  • Zach, R. 1979. Shell dropping - decision making and optimal foraging in North-western crows. Behaviour, 68: 106–117.

    Google Scholar 

  • Zach, R., and Falls, J.B. 1976a. Ovenbird (Aves: Parulidae) hunting behaviour in a patchy environment. An experimental study. Canadian Journal of Zoology, 54: 1863–1879.

    Google Scholar 

  • Zach, R., and Falls, J.B. 1976b. Do ovenbirds (Aves: Parulidae) hunt by expectation? Canadian Journal of Zoology, 54: 1894–1903.

    Google Scholar 

  • Zach, R., and Falls, J.B. 1978. Prey selection by captive ovenbirds (Aves: Parulidae). Journal of Animal Ecology, 47: 929–943.

    Google Scholar 

  • Zach, R., and Falls, J.B. 1979. Foraging and territoriality of male ovenbirds (Aves: Parulidae) in a heterogeneous habitat. Journal of Animal Ecology, 48: 33–52.

    Google Scholar 

  • Zach, R., and Smith, J.N.M. 1981. Optimal foraging in wild birds? In: Foraging Behavior: Ecological, Ethological and Psychological Approaches (ed. by A.C. Kamil & T.D. Sargent ), pp. 95–109. Garland STPM Press, New York, U.S.A.

    Google Scholar 

  • Zimmerman, M. 1981. Optimal foraging, plant density and the marginal value theorem. Oecologia, 49: 148–153.

    Google Scholar 

  • Zimmerman, M. 1979. Optimal foraging: a case for random movement. Oecologia, 43: 261–267.

    Google Scholar 

  • Zimmerman, M. 1982. Optimal foraging: random movement by pollen collecting bumblebees. Oecologia, 53: 394–398.

    Google Scholar 

  • Zimmerman, M. 1983a. Calculating nectar production rates: residual nectar and optimal foraging. Oecologia, 58: 258–259.

    Google Scholar 

  • Zimmerman, M. 1983b. Plant reproduction and optimal foraging: experimental nectar manipulations in Delphinium nelsonii. Oikos, 41: 57–63.

    Google Scholar 

  • Zwarts, L., and Drent, R.H. 1981. Prey depletion and regulation of predator density: Oystercatchers (Haematopus ostralegus) feeding on mussels (Mytilus edulis). In: Feeding and Survival Strategies of Estuarine Organisms (ed. by N.V. Jones & W.J. Wolff ), pp. 193–216. Plenum Press, New York, New York, U.S.A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Gray, R.D. (1987). Faith and Foraging: A Critique of the “Paradigm Argument from Design”. In: Kamil, A.C., Krebs, J.R., Pulliam, H.R. (eds) Foraging Behavior. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1839-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1839-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9027-8

  • Online ISBN: 978-1-4613-1839-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics