Skip to main content

Physiological Genetics of Organogenesis in vitro

  • Chapter
Genetic Manipulation of Woody Plants

Part of the book series: Basic Life Sciences ((BLSC,volume 44))

Abstract

The recovery of plants from cell culture proceeds by one of two pathways: somatic embryogenesis or shoot organogenesis. The now classic experiments of Skoog and Miller demonstrated that organogenesis was controlled by the phytohormones in the medium. Shoot-inducing medium is relatively low in auxin and high in cytokinin, root-inducing medium is high in auxin and low in cytokinin, and callus-inducing medium has intermediate levels of auxin and cytokinin. A series of experimental manipulations demonstrates that the process of shoot organogenesis can be divided into three physiological phases: the acquisition of competence for induction (phase 1), induction per se (phase 2), and morphological differentiation and growth (phase 3). These phases can be further subdivided. For example, induction includes five transient sensitivities to inhibitors. Such stage-specific inhibitions reflect phenocritical times in development rather than general metabolic toxicities. The phenocopying agents are TIBA, sorbitol, ribose, ammonium ion, and ASA. A number of species or cultivars will not produce shoots in response to any of a large number of phytohormone combinations; in some cases, this can be shown to be the result of a block in the acquisition of competence (phase 1) rather than a block in the induction of shoots. Close attention to the physiological genetics of the regeneration process can lead to more efficient regeneration from responsive cultivars and regeneration from otherwise nonresponsive cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Altschuler, M., and J.P. Mascarenhas (1982) Heat shock proteins and the effects of heat shock in plants. Plant Mol. Biol. 1:103–115.

    Article  CAS  Google Scholar 

  2. Barron, E.S.G., and G.A. Harrop, Jr. (1928) Studies on blood metabolism. II. The effect of methylene blue and other dyes upon the glycolysis and lactic acid formation of mammalian and avian erythrocytes. J. Biol. Chem. 79:65–87.

    CAS  Google Scholar 

  3. Beaty, R.M. (1987) M.S. Thesis, Department of Botany, University of Tennessee, Knoxville, Tennessee.

    Google Scholar 

  4. Breton, A.M., and Z.R. Sung (1982) Temperature-sensitive carrot variants impaired in somatic embryogenesis. Dev. Biol. 90:58–66.

    Article  PubMed  CAS  Google Scholar 

  5. Brown, D.C.W., D.W.M. Leung, and T.A. Thorpe (1979) Osmotic requirement for shoot formation in tobacco callus. Physiol. Plant. 46:36–41.

    Article  CAS  Google Scholar 

  6. Christianson, M.L. (1987) Causal events in morphogenesis. In Plant Tissue and Cell Culture, C.E. Green, D.A. Somers, W.P. Hackett, and D.D. Biesboer, eds. Alan R. Liss, Inc., New York, pp. 45–55.

    Google Scholar 

  7. Christianson, M.L., and D.A. Warnick (1983) Competence and determination in the process of in vitro shoot organogenesis. Dev. Biol. 95:288–293.

    Article  PubMed  CAS  Google Scholar 

  8. Christianson, M.L., and D.A. Warnick (1984) Phenocritical times in the process of in vitro shoot regeneration. Dev. Biol. 101:382–390.

    Article  PubMed  CAS  Google Scholar 

  9. Christianson, M.L., and D.A. Warnick (1985) Temporal requirement for phytohormone balance in the control of organogenesis in vitro. Dev. Biol. 112:494–497.

    Article  CAS  Google Scholar 

  10. Christianson, M.L., and D.A. Warnick (1987) Organogenesis in vitro as a developmental process. HortScience (in press).

    Google Scholar 

  11. Claire, A. (1982) Augmentation de l’activité gibberellique chez les tiges volubiles d’Ipomoea purpurea. Effects d’un traitement au chlorure de lithium. Physiol. Veg. 20:11–22.

    CAS  Google Scholar 

  12. Cleland, C.E., and Y. Ben-Tal (1982) Influence of giving salicylic acid for different time periods on flowering and growth in the long day plant Lemna gibba G3. Plant Physiol. 70:287–290.

    Article  PubMed  CAS  Google Scholar 

  13. Cross, J.W., and W.R. Briggs (1979) Solubilized auxin-binding protein. Planta 146:263–270.

    Article  CAS  Google Scholar 

  14. Dhawan, R.S., and K.K. Nanda (1982) Stimulation of root formation o n Impatiens balsamina L. cuttings by coumarin and the associated biochemical changes. Biol. Plant. 24:177–182.

    Article  CAS  Google Scholar 

  15. Earle, E.D., and J.G. Torrey (1965) Morphogenesis in cell colonies grown from Convolvulus cell suspensions plated on synthetic media. Am. J. Bot. 52:891–899.

    Article  PubMed  CAS  Google Scholar 

  16. Ellis, D. (1986) Ph.D. Dissertation, Department of Botany, University ofMontana, Missoula, Montana.

    Google Scholar 

  17. Feldmann, K.A., and M.D. Marks (1986) Rapid and efficient regeneration of plants from explants of Arabidopsis thaliana. Plant Sci. 47:63–69.

    Article  Google Scholar 

  18. Gabara, B. (1982) Effect of morphactin (chlorflurenol IT 3456) on the mitotic activity and cell growth in roots of Pisum sativa L. Acta Soc. Bot. Pol. 51:39–50.

    CAS  Google Scholar 

  19. Gloor, H. (1947) Phanokopie-Versuche mit Ather an Drosophila. Rev. Suisse Zool. 54:637–713.

    Google Scholar 

  20. Goldschmidt, R.B. (1935) Gen und Ausseneigenschaft. Z. Indukt. Abstamm. Vererbungsl. 69:38–69.

    Article  Google Scholar 

  21. Goldschmidt, R.B. (1957) Problematics of the phenomenon of phenocopy. J. Madras Univ. B 27:12–24.

    Google Scholar 

  22. Haccius, B., and D. Wilhelm (1966) Mutationen kopierende Bluten-Anomalien bei Pisum sativum nach Phenylborsaure-behandlung. Planta 69:288–291.

    Article  CAS  Google Scholar 

  23. Hadorn, E. (1961) Developmental Physiology and Lethal Factors, John Wiley and Sons, New York.

    Google Scholar 

  24. Han, P.F., G.Y. Han, H.C. McBay, and J. Johnson, Jr. (1978) Alteration of the regulatory properties of chicken liver fructose-1,6-bisphosphatase by treatment with aspirin. Biochem. Biophys. Res. Comm. 85:747–755.

    Article  PubMed  CAS  Google Scholar 

  25. Huxter, T.J., T.A. Thorpe, and D.M. Reid (1981) Shoot initiation in light-and dark-green tobacco callus: The role of ethylene. Physiol. Plant. 53:319–326.

    Article  CAS  Google Scholar 

  26. Kumar, S., and K.K. Nanda (1981) Gibberellic acid-and salicylic acid-caused formation of new proteins associated with extension growth and flowering of Impatiens balsamina. Biol. Plant. 23:321–327.

    Article  CAS  Google Scholar 

  27. Lado, P., R. Cerana, A. Bonetti, M.T. Marre, and E. Marre (1981) Effects of calmodulin inhibitors in plants. I. Synergism with fusicoccin in the stimulation of growth and H+ secretion and in the hyperpolarization of the transmembrane potential. Plant Sci. Lett. 23:253–262.

    Article  CAS  Google Scholar 

  28. Landauer, W. (1957) Phenocopies and genotype, with special reference to sporadically-occurring developmental variants. Am. Naturalist 91:79–90.

    Article  Google Scholar 

  29. Landauer, W. (1958) On phenocopies, their developmental physiology and genetic meaning. Am. Naturalist 92:201–213.

    Article  Google Scholar 

  30. Mitsuhasi-Kato, M., and H. Shibaoka (1981) Effects of actinomycin-D and 2,4-dinitrophenol on the development of root primordia in azuki bean stem cuttings. Plant Cell Physiol. 22:1431–1436.

    Google Scholar 

  31. Moore, D. (1981) Effects of hexose analogues on fungi: Mechanisms of inhibition and of resistance. New Phytol. 87:487–515.

    Article  CAS  Google Scholar 

  32. Murashige, T. (1961) Suppression of shoot formation in cultured tobacco cells by gibberellic acid. Science 134:280.

    Article  Google Scholar 

  33. Murashige, T. (1964) Analysis of the inhibition of organ formation in tobacco tissue culture by gibberellin. Physiol. Plant. 17:636–643.

    Article  CAS  Google Scholar 

  34. Murashige, T. (1965) Effects of stem-elongation retardants and gibberellin on callus growth and organ formation in tobacco tissue culture. Physiol. Plant. 18:665–673.

    Article  CAS  Google Scholar 

  35. Plumb-Dhindsa, P.L., R.S. Dhindsa, and T.A. Thorpe (1979) Nonautotropic CO2 fixation during shoot formation in tobacco callus. J. Exp. Bot. 30:759–767.

    Article  CAS  Google Scholar 

  36. Ram, H.Y.M., and G. Mehta (1982) Regeneration of plantlets from cultured morphactin-induced barren capitula of African marigold (Tagetes erecta L.). Plant Sci. Lett. 26:227–232.

    Article  CAS  Google Scholar 

  37. Rucker, W. (1982) Morphactin-induced changes in the cytokinin effect on tissue and organ cultures of Nicotiana tabacum. Protoplasma 113:103–109.

    Article  Google Scholar 

  38. Saunders, M.J., and P.K. Hepler (1982) Calcium ionophore A23187 stimulates cytokinin-like mitosis in Funaria. Science 217:943–945.

    Article  PubMed  CAS  Google Scholar 

  39. Skoog, F., and C.O. Miller (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11:118–140.

    PubMed  CAS  Google Scholar 

  40. Suzuki, D.T. (1970) Temperature-sensitive mutations in Drosophila melanogaster. Science 170:695–706.

    Article  PubMed  CAS  Google Scholar 

  41. Thorpe, T.A. (1974) Carbohydrate availability and shoot formation in tobacco callus cultures. Physiol. Plant. 30:77–81.

    Article  CAS  Google Scholar 

  42. Thorpe, T.A., and D.D. Meier (1972) Starch metabolism, respiration, and shoot formation in tobacco callus cultures. Physiol. Plant. 27:365–369.

    Article  CAS  Google Scholar 

  43. Thorpe, T.A., and D.D. Meier (1973) Effects of gibberellic acid and abscisic acid on shoot formation in tobacco callus cultures. Physiol. Plant. 29:121–124.

    Article  CAS  Google Scholar 

  44. Waddington, C.H. (1956) Principles of Embryology, Allen and Unwin, London.

    Book  Google Scholar 

  45. Waddington, C.H. (1961) Genetic assimilation. Adv. Genet. 10:257–292.

    Article  PubMed  CAS  Google Scholar 

  46. Walker, K.A., M.L. Wendeln, and E.G. Jaworski (1979) Organogenesis in callus tissue of Medicago sativa. The temporal separation of induction processes from differentiation processes. Plant Sci. Lett. 16:23–30.

    Article  CAS  Google Scholar 

  47. Warnick, D.A. (1985) Developmental biology of rhizogenesis in vitro in Convolvulus arvensis. M.A. Thesis, San Jose State University, San Jose, California.

    Google Scholar 

  48. Wu, F.S., Y.C. Park, D. Roufa, and A. Martonosi (1981) Selective stimulation of the synthesis of an 80,000 dalton protein by calcium ionophores. J. Biol. Chem. 256:5309–5312.

    PubMed  CAS  Google Scholar 

  49. Yamamoto, R., N. Sakurai, and Y. Masuda (1981) Inhibition of auxininduced cell elongation by galactose. Physiol. Plant. 53:543–547.

    Article  CAS  Google Scholar 

  50. Yusufov, A.G. (1982) Origin and evolution of the phenomenon of regeneration in plant (problem of evolution ontogenesis). Usp. Sovrem. Biol. 93:89–104 (translated from Russian by Leo Kanner Associates).

    Google Scholar 

  51. Zatyko, J., F. Kiss, and I. Simon (1980) Indikatorok es mikrotechnikai festekek hatasa szovet-es szervtenyeszetekre. Bot. Kozlem. 67:97–101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Christianson, M.L., Warnick, D.A. (1988). Physiological Genetics of Organogenesis in vitro. In: Hanover, J.W., Keathley, D.E., Wilson, C.M., Kuny, G. (eds) Genetic Manipulation of Woody Plants. Basic Life Sciences, vol 44. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1661-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1661-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8922-7

  • Online ISBN: 978-1-4613-1661-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics