Skip to main content

Analysis of Host Range in Transformation of Higher Plants by Agrobacterium Tumefaciens

  • Chapter
Genetic Manipulation of Woody Plants

Part of the book series: Basic Life Sciences ((BLSC,volume 44))

  • 203 Accesses

Abstract

Agrobacterium tumefaciens transforms a wide variety of dicotyledonous plants by introducing a specific piece of DNA (T-DNA) of a large tumor-inducing plasmid (Ti-plasmid) into plant cells. A wide variety of dicotyledonous plants and some gymnosperms are susceptible to infection. However, the ease of infectability and the efficiency of transformation vary widely within these groups. As a general rule, most of the gymnosperms are infected only with difficulty if at all. The transfer of the T-DNA to plant cells depends upon the activity of a region of the Ti-plasmid termed the virulence (vir) region. We have shown that the efficiency of transfer and the host range properties of Agrobacterium are, in large part, due to the genes in the vir region. In particular, virA, a regulatory molecule which recognizes plant signals, seems to be especially important. In addition, we have identified other regions which seem to be associated with the efficiency of transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akiyoshi, D.E., H. Klee, R.M. Amasino, E.W. Nester, and M.P. Gordon (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc. Natl. Acad. Sci., USA 81:5994–5998.

    Article  PubMed  CAS  Google Scholar 

  2. Bolton, G.W., M.P. Gordon, and E.W. Nester (1986) Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci required for virulence. Science 232:983–985.

    Article  PubMed  CAS  Google Scholar 

  3. Buchholz, W.G., and M.F. Thomashow (1984) Host range encoded by the Agrobacterium tumefaciens tumor-inducing plasmid pTiAg63 can be expanded by modification of its T-DNA oncogene complement. J. Bacteriol. 160:327–332.

    PubMed  CAS  Google Scholar 

  4. Douglas, C., W. Halperin, M. Gordon, and E. Nester (1985) Specific attachment of Agrobacterium tumefaciens to bamboo cells in suspension cultures. J. Bacteriol. 161:764–766.

    PubMed  CAS  Google Scholar 

  5. Draper, J., A. MacKenzie, M. Davy, and J. Freeman (1983) Attachment of Agrobacterium tumefaciens to mechanically isolated asparagus cells. Plant Sci. Lett. 29:227–236.

    Article  Google Scholar 

  6. Garfinkel, D.J., and E.W. Nester (1980) Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J. Bacteriol. 144:732–743.

    PubMed  CAS  Google Scholar 

  7. Goodman, R.N., Z. Kiraly, and K.R. Wood (1986) The Biochemistry and Physiology of Plant Disease, University of Missouri Press, Columbia, Missouri, 433 pp.

    Google Scholar 

  8. Hoekema, A., P.R. Hirsch, P. Hooykaas, and R.A, Schilperoort (1983) Abinary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180.

    Article  CAS  Google Scholar 

  9. Hood, E., G. Jen, L. Kayes, J. Kramer, R. Fraley, and M.-D. Chilton (1984) Restriction endonuclease map of pTiB0542, a potential Ti-plasmid vector for genetic engineering of plants. Bio/Technology 2:702–709.

    Article  CAS  Google Scholar 

  10. Horsch, R.B., H.J. Klee, S. Stachel, S.C. Winans, E.W. Nester, S.G. Rogers, and R.T. Fraley (1986) Analysis of Agrobacterium tumefaciens virulence mutants in leaf discs. Proc. Natl. Acad. Sci., USA 83: 2571–2575

    Article  PubMed  CAS  Google Scholar 

  11. Jefferson, R.A., S. Burgess, and D. Hirsh (1986) Beta-glucuronidase from Escherichia coli as a gene-fusion marker. Proc. Natl. Acad. Sci., USA 83:8447–8451.

    Article  PubMed  CAS  Google Scholar 

  12. Jin, S., T. Komari, M.P. Gordon, and E.W. Nester (1987) Genes responsible for the supervirulent phenotype of Agrobacterium tumefaciens strain A281. J. Bacteriol. (in press).

    Google Scholar 

  13. Kaiss-Chapman, R.W., and R.O. Morris (1977) Trans-zeatin in culture filtrates of Agrobacterium tumefaciens. Biochem. Biophys. Res. Comm. 76:453–459.

    Article  CAS  Google Scholar 

  14. Komari, T., W. Halperin, and E. Nester (1986) Physical and functional map of supervirulent Agrobacterium tumefaciens tumor-inducing plasmid pTiBo542. J. Bacteriol. 166:88–94.

    PubMed  CAS  Google Scholar 

  15. Leroux, B., M.F. Yanofsky, S.C. Winans, J.E. Ward, S.F. Ziegler, and E.W. Nester (1987) Characterization of the virA locus of Agrobacterium tumefaciens: A transcriptional regulator and host range determinant. EMBO J. 6:849–856.

    PubMed  CAS  Google Scholar 

  16. Matthysse, A., and R.H. Gurlitz (1982) Plant cell range for attachment of Agrobacterium tumefaciens to tissue culture cells. Physiol. Plant Pathol. 21:381–387.

    Article  Google Scholar 

  17. Nester, E.W., M.P. Gordon, R.M. Amasino, and M.F. Yanofsky (1984) Crown gall: A molecular and physiological analysis. Ann. Rev. Plant Physiol. 35:387–413.

    Article  CAS  Google Scholar 

  18. Panagopoulos, C., and P.G. Psallidas (1973) Characteristics of Greek isolates of Agrobacterium tumefaciens (E.F. Smith and Townsend) Conn. J. Appl. Bacteriol. 36:233–240.

    Article  CAS  Google Scholar 

  19. Powell, A.L., and M.P. Gordon (1987) Plant tumor formation. In Biochemistry of Plants: A Comprehensive Treatise. Vol. II. Molecular Biology, S. Marcus, ed. Academic Press, Inc., Orlando, Florida (in press).

    Google Scholar 

  20. Schafer, W., A. Gorz, and G. Kahl (1987) T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. Nature 327:529–532.

    Article  Google Scholar 

  21. Schroder, G., S. Waffenschmidt, E. Weiler, and J. Schroder (1984) The T-region of Ti-plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur. J. Biochem. 138:387–391.

    Article  PubMed  CAS  Google Scholar 

  22. Stachel, S.E., and E.W. Nester (1986) The genetic and transcriptional organization of the vir region of the A6 Ti-plasmid of Agrobacterium tumefaciens. EMBO J. 5:1445–1454.

    PubMed  CAS  Google Scholar 

  23. Stachel, S.E., and P. Zambryski (1986) Agrobacterium tumefaciens and the susceptible plant cell: A novel adaptation of extracellular recognition and DNA conjugation. Cell 47:155–157.

    Article  PubMed  CAS  Google Scholar 

  24. Stachel, S.E., E. Messens, M. Van Montagu, and P. Zambryski (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629.

    Article  Google Scholar 

  25. Thomashow, L., A. Reeves, and M. Thomashow (1984) Crown gall oncogenesis: Evidence that a T-DNA gene from the Agrobacterium Ti-plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc. Natl. Acad. Sci., USA 81:5071–5075.

    Article  PubMed  CAS  Google Scholar 

  26. Thomashow, M., W. Hugly, W.G. Buchholz, and L. Thomashow (1986) Molecular basis for the auxin-independent phenotype of crown gall tumor tissues. Science 231:616–618.

    Article  PubMed  CAS  Google Scholar 

  27. Thomashow, M.F., R. Nutter, K. Postle, M.-D. Chilton, F.R. Blattner, A. Powell, M.P. Gordon, and E.W. Nester (1980) Recombination between higher plant DNA and the Ti-plasmid of Agrobacterium tumefaciens. Proc. Natl. Acad. Sci., USA 77:6448–6452.

    Article  PubMed  CAS  Google Scholar 

  28. Winans, S.C., P.R. Ebert, S.E. Stachel, M.P. Gordon, and E.W. Nester (1986) A gene essential for Agrobacterium virulence is homologous to a family of positive regulatory loci. Proc. Natl. Acad. Sci., USA 83:8278–8282.

    Article  PubMed  CAS  Google Scholar 

  29. Yamada, T., C. Palm, B. Brooks, and T. Kosuge (1985) Nucleotide sequences of t h e Pseudomonas savastonoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA. Proc. Natl. Acad. Sci., USA 82:6522–6526.

    Article  PubMed  CAS  Google Scholar 

  30. Yanofsky, M., B. Lowe, A. Montoya, R. Rubin, W. Krul, M. Gordon, and E. Nester (1985) Molecular and genetic analysis of factors controlling host range in Agrobacterium tumefaciens. Mol. Gen. Genet. 201:237–246.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Nester, E.W. (1988). Analysis of Host Range in Transformation of Higher Plants by Agrobacterium Tumefaciens . In: Hanover, J.W., Keathley, D.E., Wilson, C.M., Kuny, G. (eds) Genetic Manipulation of Woody Plants. Basic Life Sciences, vol 44. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1661-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1661-9_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8922-7

  • Online ISBN: 978-1-4613-1661-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics