Skip to main content

Part of the book series: The Kluwer International Series in Engineering and Computer Science ((SECS,volume 70))

  • 157 Accesses

Abstract

The objective of fault modeling is to evaluate the various errors which can occur in digital circuits as a result of the various physical faults in fabricated devices and interconnections [l]–[7]. Conceptually, this involves the three principal steps illustrated in Figure 6.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. L. Wadsack, Fault modeling and logic simulation of CMOS and MOS integrated circuits, Bell Syst. Tech. J., vol. 57, pp. 1449–1474 (1978).

    MATH  Google Scholar 

  2. J. Galaiy, Y. Crouzet and M. Vergniault, Physical vs logical fault models in MOS LSI circuits: impact on their testability, IEEE Trans. Comp., vol. C-29, pp. 527–531 (1980).

    Article  Google Scholar 

  3. J. A. Abraham and W. K. Fuchs, Fault and error models for VLSI, Proc. IEEE, vol. 74, pp. 639–654 (1986).

    Article  Google Scholar 

  4. P. Banerjee and J. A. Abraham, Characterization and testing of physical failures in MOS logic circuits, IEEE Design and Test, pp. 76–86 (Apr 1986).

    Google Scholar 

  5. J. P. Hayes, Modeling faults in digital logic, in Proc. Symp. on Rational Fault Analysis, R. Saeks and S. R. Liberty (eds), Marceli Dekker, New York, pp. 78–95 (1977).

    Google Scholar 

  6. M. A. Breuer and A. D. Friedman, Diagnosis and Reliable Design of Digital Systems, Computer Science Press, Woodland Hills, Ca (1976).

    Google Scholar 

  7. J. P. Shen, W. Maly and F. J. Ferguson, Inductive fault analysis of MOS integrated circuits, IEEE Design and Test, pp. 13–26 (Dec. 1985).

    Google Scholar 

  8. F. Fantini and C. Morandi, Failure modes and mechanisms for VLSI ICs — a review, IEE Proceedings, vol. 132, pt. G, pp. 74–81 (1985).

    Google Scholar 

  9. W. Maly, A. J. Strojwas and S. W. Director, VLSI yield prediction and estimation: a unified framework, IEEE Trans. Computer-Aided Design, vol. CAD-5, pp. 114–130 (1986).

    Article  Google Scholar 

  10. S. A. Al-Arian and D. P. Agrawal, Physical failures and fault models in CMOS circuits, IEEE Trans. Circuits and Systems, vol. CAS-34, pp. 269–279 (1987).

    Article  Google Scholar 

  11. M. Syzyeki, Modeling of spot defects in MOS transistors, Research Report No. CMUCAD-87–22, Center for Computer-Aided Design, Carnegie-Mellon University, Pittsburgh, PA (June 1987).

    Google Scholar 

  12. H. K. Reghbati, Fault detection in PLAs, IEEE Design and Test, pp. 43–50 (Dec 1986).

    Google Scholar 

  13. C. A. Papachristou and N. B. Sahgal, An improved method for detecting functional faults in semiconductor random access memories, IEEE Trans. Computers, vol. C-34, pp. 110–116 (1985).

    Article  Google Scholar 

  14. W. Maly, Realistic fault modeling for VLSI testing, Proc. 24th ACM/IEEE Design Automation Conf., pp. 173–180 (1987).

    Google Scholar 

  15. H.-C. Shih, J. T. Rahmeh and J. A. Abraham, FAUST: an MOS fault simulator with waveform simulation, IEEE Trans. Computer-Aided Design, vol. CAD-5 pp. 557–563 (1986).

    Article  Google Scholar 

  16. J.P. Hayes, Fault modeling, IEEE Design and Test, pp. 88–95 (Apr. 1985).

    Google Scholar 

  17. J.P. Hayes, Modeling faults in digital logic circuits, in Proc. Symp. on Rational Fault Analysis, R. Saeks and S. R. Liberty (eds), Marceli Dekker, New York, pp. 78–95 (1977).

    Google Scholar 

  18. J.P. Hayes, Fault modeling for digital MOS integrated circuits, IEEE Trans. Computer-Aided Design, vol. CAD-3, pp. 200–207 (1984).

    Article  Google Scholar 

  19. R. L. Wadsack, VLSI: how much fault coverage is enough, Proc. IEEE Int. Test Conf., pp. 547–554 (1981).

    Google Scholar 

  20. T. W. Williams and N. C. Brown, Defect level as a function of fault coverage, IEEE Trans. Computers, vol. C-30, pp. 987–988 (1981).

    Article  Google Scholar 

  21. E.J. McClusky and J.F. Wakely, A circuit for detecting and analyzing temporary failures, Proc. COMPCON Spring 1981, pp. 317–321 (1981).

    Google Scholar 

  22. E. J. McCluskey, Hardware fault tolerance, Center for Reliable Computing, Stanford Univ., Stanford, CA, Tech. Report CSL TN. No. 86–299 (1986).

    Google Scholar 

  23. M. L. Cortes, E. J. McCluskey, K. D. Wagner and D. J. Lu, Modeling power supply disturbances in digital circuits, Digest: IEEE Int. Solid-State Circuits Conf., pp. 164–165 (1986).

    Google Scholar 

  24. D.P. Siewiorik, A summary of fault tolerant computing research at Carnegie Mellon, Dept. of Computer Science, Carnegie Mellon University, Pittsburgh, PA, Tech. Report CMU-CS-84–123 (1984).

    Google Scholar 

  25. P. Banerjee and J. A. Abraham, Fault characterization of VLSI MOS circuits, Proc. IEEE Int. Conf. Circuits and Computers, pp. 564–568 (1982).

    Google Scholar 

  26. R. Chandramouli, On testing stuck-open faults, Proc. IEEE. Int. Symp. Fault Tolerant Computing Systems, pp. 258–265 (1983).

    Google Scholar 

  27. R. Banerjee and J.A. Abraham, Characterization and testing of physical failures in MOS logic circuits, IEEE Design and Test, pp. 76–86 (Aug. 1984).

    Google Scholar 

  28. J. A. Waicukauski, E. Lindbloom, B. K. Rosen and V. S. Iyengar, Transition fault simulation, IEEE Design and Test, pp. 32–38 (Apr. 1987).

    Google Scholar 

  29. Y.K. Malaiya and R. Narayanawamy, Modeling and testing for timing faults in synchronous sequential circuits, IEEE Design and Test, pp. 62–74 (Nov. 1984).

    Google Scholar 

  30. Y. Tamir and C. H. Sequin, Design and application of self-testing comparator implemented with MOS PLA’s, IEEE Trans. Computers, vol. C-33, pp. 493–506 (1984).

    Article  Google Scholar 

  31. S. M. Reddy and M. K. Reddy, Testable realizations for FET stuck-open faults in CMOS combinational logic circuits, IEEE Trans. Computers, vol. C-35, pp. 742–754 (1986).

    Article  Google Scholar 

  32. S. K. Jain and V. D. Agrawal, Modeling and test generation algorithms for MOS circuits, IEEE Trans. Computers, vol. C-34, pp. 426–433 (1985).

    Article  Google Scholar 

  33. Y. M. El-Ziq and R. J. Cloutier, Functional-level test generation for stuck-open faults in CMOS VLSI, Proc. IEEE Int. Test Conf., pp. 536–546 (1981).

    Google Scholar 

  34. S. M. Reddy, M. K. Reddy and V. D. Agrawal, Robust tests for stuck-open faults in CMOS combinational circuits, Proc IEEE Int. Symp. Fault-Tolerant Comput., pp. 44–49 (1984).

    Google Scholar 

  35. M. K. Reddy and S. M. Reddy, Detecting FET stuck-open faults in CMOS latches and flip-flops, IEEE Design and Test, pp. 17–26 (Oct. 1986).

    Google Scholar 

  36. S. A. Al-Arian, Testing algorithms of open faults in CMOS networks, Proc. IEEE Southeast Conf., pp. 352–359 (1987).

    Google Scholar 

  37. P. S. Moritz and L. M. Thorsen, CMOS circuit testability, Proc. IEEE Custom Integrated Circuits Conf., pp. 311–314 (1985).

    Google Scholar 

  38. S. A. Al-Arian and M. Nordenso, Fault models of basic CMOS structures, Proc. IEEE Southeast Conf., pp. 360–366 (1987).

    Google Scholar 

  39. G. G. Freeman, Development of logic level CMOS bridging fault models, CRC Tech. Report 86–20, Center for Reliable Computing, Stanford University, Stanford, CA (1986).

    Google Scholar 

  40. K. L. Kodandapani and D. K. Pradhan, Undetectability of bridging faults and validity of stuck-at fault test sets, IEEE Trans. Computers, vol. C-29, pp. 55–59 (1980).

    Article  MathSciNet  Google Scholar 

  41. T. J. Chaney and C. E. Molnar, Anomalous behavior of synchronizer and arbiter circuits, IEEE Trans. Computers, vol. C-22, pp. 421–422 (1973).

    Article  Google Scholar 

  42. L. Kleeman and A. Cantoni, Metastable behavior in digital systems, IEEE Design and Test of Computers, pp. 4–19 (Dec. 1987).

    Google Scholar 

  43. T. Kacprzak and A. Albicki, Analysis of metastable operation in RS CMOS flip-flops, IEEE J. Solid State Circuits, vol. SC-22, pp. 57–64 (1987).

    Article  Google Scholar 

  44. L. Kleeman and A. Cantoni, On the unavoidabiliiy of metastable behavior, IEEE TVans. Computers, vol. 36, pp. 109–112 (1987).

    Article  Google Scholar 

  45. L. R. Marino, General theory of metastable operation, IEEE Trans. Computers, vol. C-30, pp. 107–115 (1981).

    Google Scholar 

  46. J. H. Hohl, W. R. Larsen and L. C. Schooley, Prediction of error probabilities for integrated digital synchronizers, IEEE J. Solid-State Circuits, vol. SC-19, pp. 236–244 (1984).

    Article  Google Scholar 

  47. W. Fleischhammer and O. Dortok, The anomalous behavior of flip-flops in synchronizer circuits, IEEE Trans. Computers, vol. C-28, pp. 273–276 (1979).

    Article  Google Scholar 

  48. S. T. Flannagan, Synchronization reliability in CMOS technology, IEEE J. Solid-State Circuits, vol. SC-20, pp. 880–882 (1985).

    Article  Google Scholar 

  49. H. J. M. Veendrick, The behavior of flip-flops used as synchronizers and prediction of their failure rate, IEEE J. Solid-State Circuits, vol. SC-15, pp. 169–176 (1980).

    Article  Google Scholar 

  50. J. L. Mangin and K. W. Current, Characteristics of prototype CMOS quaternary logic encoder-decoder circuits, IEEE Trans. Comp., vol. C-35, pp. 157–161 (1986).

    Article  Google Scholar 

  51. A. D. Singh, Four-valued interface circuits for NMOS VLSI, Int. J. Electronics, vol. 63, pp. 269–279 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tewksbury, S.K. (1989). Fault Modeling. In: Wafer-Level Integrated Systems. The Kluwer International Series in Engineering and Computer Science, vol 70. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1625-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1625-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8898-5

  • Online ISBN: 978-1-4613-1625-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics