Skip to main content

Optical Interconnections

  • Chapter
Wafer-Level Integrated Systems

Part of the book series: The Kluwer International Series in Engineering and Computer Science ((SECS,volume 70))

Abstract

Chapter 2 reviewed several limits imposed by electrical connections on the performance of systems. Given the severity of several of those limits, it is natural to consider alternative approaches to provide communications within a high-performance system. Optical interconnects have received considerable attention [1] – [11]. Already, optical networks are being developed for local area networks to provide high performance networking between computers. Even within a single computing machine, optical communication has been investigated for communications between circuit boards. While optical interconnections are increasingly being used for longer length communications applications, connections between neighboring electronic gates on an IC obviously will remain electrical. The main question is not whether optical communications will be used within a computing machine but instead how deeply such optical techniques will penetrate into the interconnection hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. D. Hutcheson, Optical interconnect technology developments, Proc. IEEE Fall Joint Computer Conf, pp. 448–456 (1986).

    Google Scholar 

  2. N. Bar-Chaim, I. Urey and A. Yariv, Integrated optoelectronics, IEEE Spectrum, pp. 38–45 (May 1982).

    Google Scholar 

  3. P. R. Haugen, A. Husain and L. D. Hutcheson, Directions and development in optical interconnection technology, Proc. SPIE, vol. 625, pp. 110–116 (1986).

    Article  Google Scholar 

  4. O. Wada, T. Sakurai and T. Nakagami, Recent progress in optoelectronic circuits (OEIC’s), IEEE J. Quantum Electronics, vol. QE-22, pp. 805–821 (1986).

    Article  Google Scholar 

  5. W. H. Wu, L. A. Bergman, A. R. Johnston, C. C. Guest, S. C. Essener, P. K. L. Yu, M. R. Feldman and S. H. Lee, Implementation of optical interconnects for VLSI, IEEE Trans. Electron Devices, vol. ED-34, pp. 706–714 (1987).

    Article  Google Scholar 

  6. J. W. Goodman, R. K. Kostuk and B. Clymer, Optical interconnects: an overview, Proc. IEEE VLSI Multilevel Interconnection Conf., pp. 219–224 (1985).

    Google Scholar 

  7. J. W. Goodman, Optical interconnects in microelectronics, Proc SPIE, vol. 456 (Optical Computing), pp. 72–85 (1984).

    Article  Google Scholar 

  8. J.W. Goodman, F.J. Leonberger, S.Y. Kung and R.A. Athale, Optical interconnections for VLSI systems, Proc. IEEE, vol. 72, pp. 850–866 (1984).

    Article  Google Scholar 

  9. A. Husain, Optical interconnect of digital integrated circuits and systems, Proc. SPIE, vol. 466: Optical Interfaces for Digital Circuits and Systems, pp. 10–20 (1985).

    Article  Google Scholar 

  10. D. G. Hall, Survey of silicon-based integrated optics, IEEE Computer, pp. 25–32 (Dec 1987).

    Google Scholar 

  11. C. M. Lin and D. L. Carter, Photonic I/O’s at the PWB and chip level?, Proc. 6th Int. Electronics and Packaging Conf., San Diego (1986).

    Google Scholar 

  12. A. Huang, Architectural considerations involved in the design of an optical computer, Proc. IEEE, vol. 72, pp. 780–786 (1984).

    Article  Google Scholar 

  13. B. K. Jenkins, P. Chavel, R Forchheimer, A. A. Sawchuk and T. C. Strand, Architectural implications of a digital optical processor, Applied Optics, vol. 23, pp. 3465–3474 (1984).

    Article  Google Scholar 

  14. L. C. West, Picosecond integrated optical logic, IEEE Computer, pp. 34–46 (Dec 1987).

    Google Scholar 

  15. T. Li, Advances in optical fiber communications: A historical perspective, IEEE J. Sel. Areas Commun., vol. SAC-1, pp. 356–372 (1983).

    Google Scholar 

  16. L. A. Hornak, S. K. Tewksbury and M. Hatamian, The impact of high-T c superconductivity on systems communications, Proc. 38th IEEE Electronic Components Conf., pp. 152–158 (1988).

    Google Scholar 

  17. H. C. Jones and D. J. Herrell, The characteristics of chip-to-chip signal propagation in a package suitable for superconducting circuits, IBM J. Res. Develop., vol. 24, pp. 172–177 (1980).

    Article  Google Scholar 

  18. H. U. Chou and M. A. Franklin, Optical distribution of clock signals in wafer scale digital circuits, Proc. IEEE Int. Conf. Computer Design, pp. 117–122 (1987).

    Google Scholar 

  19. S. Luryi, T. P. Pearsall, H. Temkin and J. C. Bean, Waveguide infrared photodetectors on a silicon chip, IEEE Electron Device Letters, vol. EDL-7, pp. 104–107 (1986).

    Article  Google Scholar 

  20. J.L. Merz, Integrated optoelectronic devices for high-speed IC interconnects, Proc. SPIE: Optical Interfaces for Digital Circuits and Systems, vol. 466, pp. 21–28 (1984).

    Article  Google Scholar 

  21. R. K. Kostuk, J. W. Goodman and L. Hesselink, Optical imaging applied to microelectronic chip-to-chip interconnections, Appl. Optics, vol. 24, pp. 2851–2858 (1985).

    Article  Google Scholar 

  22. H. Kessel, M. Ettenburg, J.P. Wittke and I. Ladany, Laser diodes and LEDs for fiber optical communications, in Semiconductor Devices for Optical Communications, M. J. Adams and A. G. Stevenson (Eds), Springer-Verlag, pp. 9–60 (1982).

    Chapter  Google Scholar 

  23. P. R. Haugen, A. Husain and L. D. Hutcheson, Directions and developments in optical interconnect technology, Proc. SPIE, vol. 625, pp. 110–116 (1986).

    Article  Google Scholar 

  24. M. K. Kilcoyne, D. Kasemset, R. Asatourian and S. Beccue, Optical data transmission between high speed integrated circuit chips, Proc. SPIE, vol. 625, pp. 127–133 (1986).

    Article  Google Scholar 

  25. K. Y. Lau, N. Bar-Chaim, P. L. Derry and A. Yariv, High-speed digital modulation of ultralow threshold (<1 mA) GaAs single quantum well lasers without bias, Appl. Phys. Lett., vol. 51, pp. 69–71 (1987).

    Article  Google Scholar 

  26. R.M. Fletcher, D.K. Wagner and J.M. Ballantyne, GaAs light-emitting diodes fabricated on Ge-coated silicon substrates, Appl. Phys. Lett., vol. 44, pp. 967–969 (1984).

    Article  Google Scholar 

  27. Y. Shinoda, T. Nishioka and Y. Ohmachi, GaAs light emitting diodes fabricated on SiO2/Si wafers, Jpn. J. Appl. Phys., vol. 22, pp. L450-L451 (1983).

    Article  Google Scholar 

  28. T.H. Windhorn, G.M. Metze, B-Y. Tsaur and J.C.C. Fan, AlGaAs double heterostructure diode lasers fabricated on a monolithic GaAs/Si substrate, Appl. Phys. Lett., vol. 45, pp. 309–311 (1984).

    Article  Google Scholar 

  29. T. H. Windhorn and G. M. Metze, Room temperature operation of GaAs/AlGaAs diode lasers fabricated on a monolithic GaAs/Si substrate, Appl. Phys. Lett., vol. 47, pp. 1031–1033 (1985).

    Article  Google Scholar 

  30. R. D. Dupois, J. P. van der Ziel, R. A. Logan, J. M. Brown and C. J. Pizone, Low-threshold high-efficiency AlGaAs-GaAs double-heterostructure injection lasers grown on Si substrates by metallorganic chemical vapor deposition, Appl. Phys. Lett., vol. 50, pp. 407–409 (1987).

    Article  Google Scholar 

  31. G.M. Metze, H.K. Choi and B-Y. Tsaur, Metal-semiconductor field-effect transistors fabricated in GaAs layers grown directly on Si substrates by molecular beam epitaxy, Appl. Phys. Lett., vol 45, pp. 1107–1109 (1984).

    Article  Google Scholar 

  32. T. Ishida, T. Nonaka, C. Yamagishi, Y. Kawarada, Y. Sano, M. Akiyama and K. Kaminishi, GaAs MESFET ring oscillator on silicon substrate, IEEE Trans. Electron Devices, vol. ED-32, pp. 1037–1041 (1985).

    Article  Google Scholar 

  33. P. P. Deimel, A. Bloemeke, J. Cheng, S. R. Forrest, S. J. Forti, P. H.-S. Hu, R. C. Miller, J. R. Potopowicz, D. D. Roccassecca, C. W. Seabury and K. Strege, Electrical and optical integration of a monolithic 1 x 12 array of InGaAsP/InP (λ = 1.3 µm) light emitting diodes, Digest: Optical Fiber Commun. Conf., paper TUC4 (1985).

    Google Scholar 

  34. M. G. Brown, S. R. Forrest, P. H.-S. Hu, D. R. Kaplan, M. Koza, Y. Ota, J. R. Potopowicz, C. W. Seabury and M. A. Washington, Fully optically and electrically interfaced monolithic 1 x 12 array of In0.53Ga0.47As/InP p-i-n photodiodes, Digest: IEEE Int. Electron Dev. Meeting, paper 31.5 (1984).

    Google Scholar 

  35. S. R. Forrest, Monolithic optoelectronic integration: a new component technology for lightwave communications, J. Lightwave Technol., vol LT-3, pp. 1248–1263 (1985).

    Article  Google Scholar 

  36. J. Carney, M. Helix, R. Kolbas, S. Jamison and S. Ray, Integrated optoelectronic transmitter, Proc. SPIE: Integrated Optics III, vol. 408, pp. 121–127 (1983).

    Article  Google Scholar 

  37. J.C. Gammel and J.M. Ballantyne, An integrated photoconductive detector and waveguide structure, Appl. Phys. Lett., vol. 36, pp. 149–151 (1980).

    Article  Google Scholar 

  38. S. Valette, J. Lizet, P. Mottier, J.P. Jadot, P. Gidon and S. Renard, Integratedoptical circuits achieved by planar technology on silicon substrates: application to the optical spectrum analyzer, IEE Proc., vol 131, pt.H, pp. 325–330 (1984).

    Google Scholar 

  39. S. B. Kim and Y. S. Kwon, Integrated optical bent waveguide with grown 45° mirror by selective liquid-phase epitaxy of GaAs, J. Appl. Phys., vol. 61, pp. 5478–5480 (1987).

    Article  Google Scholar 

  40. I.K. Naik, Low-loss integrated optical waveguide fabricated by nitrogen ion implantation, Appl. Phys. Lett., vol. 43, pp. 519–520 (1983).

    Article  Google Scholar 

  41. S. Dutta, H.E. Jackson and J.T. Boyd, Use of laser annealing to achieve low loss in Corning 7059 glass, ZnO, Si3N4, Nb2O5 and Ta2O5 optical waveguides, Proc. SPIE: Integrated Optics II, vol. 321, pp. 23–28 (1982).

    Article  Google Scholar 

  42. J. T. Boyd, R. W. Wu, D. E. Zelman, A. Naumann, H. A. Timlin and H. E. Jackson, Guided wave optical structures utilizing silicon, Optical Engineering, vol. 24, pp. 230–234 (1985).

    Article  Google Scholar 

  43. I. Aeby, Thick film fiber optics to integrated optics interface, Proc. SPIE: Guided Wave Optical Systems and Devices II, vol. 176, pp. 155–160 (1979).

    Article  Google Scholar 

  44. M. Kobayashi, M. Yamada, Y. Yamada, A. Himeno and H. Terui, Guided wave optical chip-to-chip interconnections, Electronic Letters, vol. 23, pp. 143–144 (1987).

    Article  Google Scholar 

  45. L. A. Hornak and S. K. Tewksbury, On the feasibility of through-wafer optical interconnects for hybrid wafer-scale integrated architectures, IEEE Trans. Electron Devices, vol. ED-34, pp. 1557–1563 (1987).

    Article  Google Scholar 

  46. B. D. Clymer and J. W. Goodman, Optical clock distribution to an IC chip, Opt. Eng., vol. 25, pp. 1103 – 1108 (1986).

    Google Scholar 

  47. R. K. Kostuk, J. W. Goodman and L. Hesselink, Design considerations for holographic optical interconnects, Appl. Optics, vol. 26, pp. 3947–3953 (1987).

    Article  Google Scholar 

  48. S. Dhar, M. A. Franklin and D. F. Wann, Reduction of clock delays in VLSI structures, Proc. IEEE Int. Conf. Computer Design, pp. 778–783 (1984).

    Google Scholar 

  49. S.K. Yao and D.B. Anderson, Shadow sputtered diffraction-limited waveguide Luneberg lenses, Appl. Phys. Lett., vol. 33, pp. 307–309 (1978).

    Article  Google Scholar 

  50. K. Iga, M. Oikawa, S. Misawa, J. Banno and Y. Kokubun, Stacked planar optics: An application of the planar waveguide, Appl. Opt., vol. 21, pp. 3456–3460 (1982).

    Article  Google Scholar 

  51. G-I. Hatakoshi, H. Fujima and K. Goto, Waveguide grating lenses for optical couplers, Appl. Opt., vol. 23, pp. 1749–1753 (1984).

    Article  Google Scholar 

  52. D. H. Hartman, M. K. Grace and C. R. Ryan, A monolithic silicon photodetector/amplifier IC for fiber and integrated optics application, J. Lightwave Technol., vol. LT-3, pp. 729–738 (1985).

    Article  Google Scholar 

  53. P. R. Prucnal, E. R. Fossum and R. M. Osgood, Integrated fiber-optic coupler for very large scale integration interconnects, Optics Letts, vol. 11, pp. 109–111 (1986)

    Article  Google Scholar 

  54. R. W. Ade, E. E. Harstead, A. H. Amirfazli, T. Cacouris, E. R. Fossum, P. R. Prucnal and R. M. Osgood, Silicon photodetector structure for direct coupling of optical fibers to integrated circuits, IEEE Trans. Electron Devices, vol. ED-34, pp. 1283–1289 (1987).

    Article  Google Scholar 

  55. R. Ramanathan, C. R. Ellis, R. W. Johnson and R. C. Jaeger, Optical fiber interfaces to diode detectors for silicon wafer scale packaging, Proc. VLSI and GaAs packaging workshop, pp. 85–86 (Sept. 1987).

    Google Scholar 

  56. W.T. Tsang, Heterostructure semiconductor lasers prepared by molecular beam epitaxy, IEEE J. Quantum Electronics, vol. QE-20, pp. 1119–1132 (1984).

    Article  Google Scholar 

  57. Y. Suematsu, Advances in semiconductor lasers, Physics Today, vol. 38(5), pp 32–39 (May 1985).

    Article  Google Scholar 

  58. T. P. Lee, Recent developments in light-emitting diodes (LED’s) for optical fiber communication, Proc. SPIE, vol. 340 (Future Trends in Fiber Optics Communications), pp. 22–31 (1982).

    Article  Google Scholar 

  59. T.H. Wood, C.A. Burrus, D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard and W. Wiegmann, High speed optical modulation with GaAs/GaAlAs quantum wells in a p-i-n diode structure, Appl. Phys. Lett., vol 44, pp. 16–18 (1984).

    Article  Google Scholar 

  60. U. Efron (Ed), Spatial Light Modulators and Applications, Proc SPIE, vol. 465, Bellingham, WA (1984)

    Google Scholar 

  61. D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood and C.A. Burrus, Novel hybrid optically bistable switch: the quantum well self-electro-optic effect device, Appl. Phys. Lett., vol. 45, pp. 13–15 (1984).

    Article  Google Scholar 

  62. G. D. Boyd, D. A. B. Miller, D. S. Chemla, S. L. McCall, A. C. Gossard and J. H. English, Multiple quantum well reflection modulators, Appl. Phys. Lett., vol. 50, pp. 1119–1121 (1987).

    Article  Google Scholar 

  63. U. Koren, B. I. Miller, T. L. Koch, G. Eisenstein, R. S. Tucker, I. Bar-Joseph and D. S. Chemla, Low loss InGaAs/InP multiple quantum well electroabsorption waveguide modulator, Appl. Phys. Lett., vol. 51, pp. 1132–1134 (1987).

    Article  Google Scholar 

  64. H. Yonezu, S. Katayama, N. Fujine, I. Sakuma and K. Nishida, Reliability of light emitters and detectors for optical fiber communication systems, IEEE J. Sel. Areas Commun., vol. SAC-1, pp. 508–514 (1983).

    Article  Google Scholar 

  65. T. P. Pearsall, Long wavelength photodetectors, Proc SPIE, vol. 340 (Future Trends in Optical Communications), pp. 56–64 (1982).

    Article  Google Scholar 

  66. T.V. Muoi, Receiver design for high speed optical fiber systems, J. Lightwave Technol., vol. LT-2, pp. 243–267 (1984).

    Article  Google Scholar 

  67. C.W. Chen and T.K. Gustafson, A high speed Si lateral photodetector fabricated over an etched interdigital mesa, Appl. Phys. Lett., vol 37, pp. 1014–1016 (1980).

    Article  Google Scholar 

  68. M. Ito, O. Wada, K. Nakai, and T. Sakurai, Monolithic integration of a metalsemiconductor-metal photodiode and a GaAs preamplifier, IEEE Elect. Dev. Lett., vol. EDL-5, pp. 531–532 (1984).

    Article  Google Scholar 

  69. R.K. Jain and D.E. Snyder, Switching characteristics of logic gates addressed by picosecond light pulses, IEEE J. Quantum Electronics, vol. QE-19, pp. 658–663 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tewksbury, S.K. (1989). Optical Interconnections. In: Wafer-Level Integrated Systems. The Kluwer International Series in Engineering and Computer Science, vol 70. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1625-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1625-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8898-5

  • Online ISBN: 978-1-4613-1625-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics