Skip to main content

Physics of Hard-Sphere Colloidal Suspensions

  • Chapter
Granular Matter

Abstract

Colloidal dispersions include many of our most commonplace, everyday materials; examples include tea, milk, cosmetics, detergents, inks, lubricants, and paints. The forces that ultimately determine the phase behaviour and mechanical properties of these systems are numerous. To try and make some headway in understanding the properties of these complex systems we must simplify. In this chapter we concentrate just on the role of the repulsive forces. In particular, we discuss how the structure and dynamics of simple colloidal systems may be understood in terms of the properties of an assembly of hard spheres, one of the simplest models for a classical liqud.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alder, B.J. and Wainwright, T.E., Phase transition for a hard sphere system, J. Chem. Phys., 27, 1208–1209, 1957.

    Article  ADS  Google Scholar 

  • Alder, B.J. and Wainwright, T.E., Studies in molecular dynamics. II. Behaviour of a small number of elastic spheres, J. Chem Phys., 33, 1439–1451, 1960.

    Article  MathSciNet  ADS  Google Scholar 

  • Bagnold, R.A., The shearing and dilatation of dry sand and the “singing” mechanism, Proc. R. Soc. London A, 295, 219–232, 1966.

    Article  ADS  Google Scholar 

  • Barker, J.A., Lattice Theories of the Liquid State, Pergamon Press, Oxford, 1963.

    Google Scholar 

  • Barrat, J.L., Baus, M., and Hansen, J.P., Density-functional theory of freezing of hard-sphere mixtures into substitutional solid-solutions, Phys. Rev. Lett., 56, 1063–1065, 1986.

    Article  ADS  Google Scholar 

  • Barrett, K.E.J., Dispersion Polymerization in Organic Media, John Wiley & Sons, New York, 1975.

    Google Scholar 

  • Bartlett, P., A model for the freezing of binary colloidal hard spheres. J. Phys. C, 2, 4979–4989, 1990.

    MathSciNet  Google Scholar 

  • Bartlett, P., 1992, unpublished.

    Google Scholar 

  • Bartlett, P. and Ottewill, R.H., Geometric interactions in binary colloidal dispersions, Langmuir, 8, 1919–1925, 1992a.

    Article  Google Scholar 

  • Bartlett, P. and Ottewill, R.H., A neutron scattering study of the structure of a bimodal colloidal crystal, J. Chem. Phys., 96, 3306–3318, 1992b.

    Article  ADS  Google Scholar 

  • Bartlett, P., Ottewill, R.H., and Pusey, P.N., Freezing of binary mixtures of colloidal hard spheres, J. Chem. Phys., 93, 1299–1312, 1990.

    Article  ADS  Google Scholar 

  • Bartlett, P., Pusey, P.N., and Ottewill, R.H., Colloidal crystallization under time-averaged zero gravity, Langmuir, 7, 213–215, 1991.

    Article  Google Scholar 

  • Bartlett, P., Ottewill, R.H., and Pusey, P.N., Superlattice formation in binary mixtures of hard-sphere colloids, Phys. Rev. Lett., 68, 3801–3804, 1992.

    Article  ADS  Google Scholar 

  • Baus, M. and Colot, J.L., The freezing of hard spheres. The density functional theory revisited. Mol. Phys., 55, 653–677, 1985.

    Article  ADS  Google Scholar 

  • Beenakker, C.W.J, and Mazur, P., Diffusion of spheres in a concentrated suspension. II, Physica A, 126, 349–370, 1984.

    Article  MathSciNet  ADS  Google Scholar 

  • Bengtzelius, U., Gotze, W., and Sjolander, A., Dynamics of supercooled liquids and the glass transition, J. Phys. C, 17, 5915–5934, 1984.

    Article  ADS  Google Scholar 

  • Berne, B.J. and Pecora, R., Dynamic Light Scattering, John Wiley & Sons, New York, 1976.

    Google Scholar 

  • Biben, T. and Hansen, J.P., On the structure of hard-sphere suspensions in a discrete solvent, Europhys. Lett., 12, 347–352, 1990.

    Article  ADS  Google Scholar 

  • Biben, T. and Hansen, J.P., Phase separation of dissymmetric binary hard-sphere fluids, Phys. Rev. Lett., 66, 2215–2218, 1991.

    Article  ADS  Google Scholar 

  • Brami, B., Joly, F., Barrat, J.L., and Hansen, J.P., Influence of the size ratio on freezing of oppositely charged hard spheres, Phys. Lett. A, 132, 187–189, 1988.

    Article  ADS  Google Scholar 

  • Buehler, R.J., Wentorf, R.H, Hirshfelder, J.O., and Curtiss, C.F., The free volume for rigid sphere molecules, J. Chem. Phys., 19, 61–71, 1951.

    Article  MathSciNet  ADS  Google Scholar 

  • Choi, G.N. and Krieger, I.M., Rheological studies of sterically stabilized model dispersions of uniform colloidal spheres. II. Steady shear viscosity, J. Colloid Interface Sci., 113, 101–113, 1986.

    Article  Google Scholar 

  • Curtin, W.A. and Ashcroft, N.W., Weighted-density functional theory of inhomogeneous liquids and the freezing transition, Phys. Rev. A, 32, 2909–2919, 1985.

    Article  ADS  Google Scholar 

  • de Kruif, C.G., van Lersel, E.M.F., Vrij, A., and Russel, W.B., Hard sphere colloidal dispersions: viscosity as a function of shear rate and volume fraction, J. Chem. Phys., 83, 4717–4725, 1985.

    Article  ADS  Google Scholar 

  • Denton, A.R. and Ashcroft, N.W., Weighted-density functional theory of non-uniform fluid mixtures: application to freezing of binary hard-sphere mixtures, Phys. Rev. A, 42, 7312–7329, 1990.

    Article  ADS  Google Scholar 

  • Duits, M.H.G., May, R.P., Vrij, A., and de Kruif, C.G., Partial structure factors in colloidal silica mixtures determined with small-angle neutron scattering contrast variation, J. Chem. Phys., 94, 4521–4531, 1991.

    Article  ADS  Google Scholar 

  • Eldridge, M., Madden, P.A., Frenkel, D., and Jefferson, J.H., 1992, private communication.

    Google Scholar 

  • Evans, R., The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform classical fluids, Adv. Phys. 28, 143–200, 1979.

    Article  ADS  Google Scholar 

  • Fuchs, M., Gotze, W., Hidebrand, S., and Latz, A., ß-Relaxation of simple systems: some addenda, Z. Phys, B. Condensed Matter, 87, 43–49, 1992.

    Article  ADS  Google Scholar 

  • Gotze, W., Aspects of structural glass transitions, In Liquids, Freezing and the Glass Transition, Les Houches, session LI, July 3–28, 1989, Hansen, J.P., Levesque, D., and Zinn-Justin, J., eds., Elsevier/North Holland, Amsterdam, 1991, pp. 287–503.

    Google Scholar 

  • Gotze, W. and Sjogren, L., ß-Relaxation at the glass transition of hard-spherical colloids, Phys. Rev. A, 43, 5442–5448, 1991.

    Article  ADS  Google Scholar 

  • Gotze, W. and Sjogren, L., Relaxation processes in super-cooled liquids, Rep. Prog. Phys., 55, 241–376, 1992.

    Article  ADS  Google Scholar 

  • Hansen, J.P., Clarifying the kinetic glass transition, Phys. World, pp. 32–36, 1991.

    Google Scholar 

  • Harkins, W.D., A general theory of the mechanism of emulsion polymerization, J. Am. Chem. Soc., 69, 1428–1444, 1947.

    Article  Google Scholar 

  • Hachisu, S., Kobayashi, Y., and Kose, A., Phase separation in monodisperse lattices, J. Colloid Interface Sci., 42, 342–348, 1973.

    Article  Google Scholar 

  • Hansen, J.P. and McDonald, I.R., Theory of Simple Liquids, 2nd ed., Academic Press, London, 1986.

    Google Scholar 

  • Hoover, W.G. and Ree, F.H., Melting transition and communal entropy for hard spheres, J. Chem. Phys., 49, 3609–3617, 1968.

    Article  ADS  Google Scholar 

  • Hanley, H.J.M., Straty, G.C., and Lindner, P., Order in a simple colloidal mixture suspension, Physica A, 174, 60–73, 1991.

    Article  ADS  Google Scholar 

  • Hachisu, S. and Yoshimura, S., Optical demonstration of crystalline superstructures in binary mixtures of latex globules, Nature (London), 283, 188–189, 1980.

    Article  ADS  Google Scholar 

  • Hachisu, S. and Yoshimura, S., Order formation in binary colloids, Physics of Complex and supermolecular Fluids, Safran, S.A. and Clark, N.A., Eds., John Wiley & Sons, New York, 1987.

    Google Scholar 

  • Jackson, G., Rowlinson, J.S., and van Swol, F., Computer simulation of mixtures of hard spheres, J. Phys. Chem., 91, 4907–4916, 1987.

    Article  Google Scholar 

  • Joosten, J.G.H., Gelade, E.T.F., and Pusey, P. N. Dynamic light scattering by non-ergodic media. Brownian particles trapped in polyacrylamide gels, Phys. Rev. A, 42, 2161–2175, 1990.

    Article  ADS  Google Scholar 

  • Kepler, J., The Six-Cornered Snowflake: An English Translation of the 1611 Latin Text by C Hardie, Oxford University Press, London, 1966.

    Google Scholar 

  • Kirkwood, J.G. and Buff, F.P., The statistical mechanical theory of solutions I, J. Chem. Phys., 19, 774–777, 1951.

    Article  MathSciNet  ADS  Google Scholar 

  • Kose, A. and Hachisu, S., Kirkwood-Alder transition in monodisperse latexes. I. Non-aqueous systems, J. Colloid Interface Sci., 46, 460–469, 1974.

    Article  Google Scholar 

  • Kops-Werkhoven, M.M. and Fijnaut, H.M., Dynamic behaviour of silica dispersions near the optical match point, J. Chem. Phys., 77, 2242–2252, 1982.

    Article  ADS  Google Scholar 

  • Kranendonk, W.G.T. and Frenkel, D., Computer simulation of solid-liquid coexistence in binary hard sphere mixtures, Mol. Phys., 72, 679–697, 1991.

    Article  ADS  Google Scholar 

  • Lekkerkerker, H.N.W., Ordering in supramolecular fluids, Physica A, 176, 1–15, 1991.

    Article  ADS  Google Scholar 

  • Lennard-Jones, J.E. and Devonshire, A.F., Critical phenomena in gases. I, Proc. R. Soc. London A, 163, 53–70, 1937.

    Article  ADS  Google Scholar 

  • Lennard-Jones, J.E. and Devonshire, A.F., Critical phenomena in gases. II. Vapour pressures and boiling points, Proc. R. Soc. London A, 165, 1–11, 1938.

    Article  ADS  Google Scholar 

  • McMillan, W.G. and Mayer, J.E., The statistical thermodynamics of multicomponent systems, J. Chem. Phys., 13, 276–305, 1945.

    Article  ADS  Google Scholar 

  • Mehta, A. and Edwards, S.F., Statistical mechanics of powder mixtures, Physica A, 157, 1091–1100, 1989.

    Article  MathSciNet  ADS  Google Scholar 

  • Mezei, F., Neutron scattering and collective dynamics in liquids and glass, in Liquids, Freezing and Glass Transition, Les Houches, Session LI, July 3–28, 1989, Hansen, J.P., Levesque, D., and Zinn-Justin, J., Eds., Elsevier/North-Holland, Amsterdam, 1991, pp. 629–687.

    Google Scholar 

  • Murray, M.J. and Sanders, J. V., Close-packed structures of spheres of two different sizes. II. The packing densities of likely arrangements, Philos. Mag. A, 42, 721–740, 1980.

    Article  ADS  Google Scholar 

  • Nijboer, B.R.A. and Rahman, A., Time expansion of correlation functions and the theory of slow neutron scattering, Physica, 32, 415–432, 1966.

    Article  ADS  Google Scholar 

  • Oxtoby, D.W., Crystallization of liquids: a density functional approach, in Liquids, Freezing and Glass Transition, Les Houches, Session LI, July 3–28, 1989, Hansen, J.P., Levesque, D., and Zinn-Justin, J., Eds., Elsevier/North-Holland, Amsterdam, 1991, pp. 147–191.

    Google Scholar 

  • Paulin, S.E. and Ackerson, B.J., Observation of a phase transition in the sedimentation velocity of hard spheres, Phys. Rev. Lett., 64, 2663–2666, 1990.

    Article  ADS  Google Scholar 

  • Pecora, R., Dynamic Light Scattering, Plenum, New York, 1985.

    Google Scholar 

  • Pusey, P.N., The dynamics of interacting Brownian particles, J. Phys. A: Math. Gen., 8, 1433–1440, 1975.

    Article  ADS  Google Scholar 

  • Pusey, P.N., Statistical properties of scattered radiation, in Photon Correlation Spectroscopy and Velocimetry, Cummins, H.Z. and Pike, E.R., Eds., Plenum, New York, 1977, pp. 45–133.

    Google Scholar 

  • Pusey, P.N., Colloidal suspensions, in Liquids, Freezing and Glass Transition, Les Houches, Session LI, July 3–28, Hansen, J.P., Levesque, D., and Zinn-Justin, J., Eds., Elsevier/North-Holland, Amsterdam, 1991, pp. 763–942.

    Google Scholar 

  • Pusey, P.N. and van Megen, W., Phase behaviour of concentrated suspensions of nearly hard colloidal spheres, Nature (London), 320, 340–342, 1986.

    Article  ADS  Google Scholar 

  • Pusey, P.N. and van Megen, W., Observation of a glass transition in suspensions of spherical colloidal particles, Phys. Rev. Lett., 59, 2083–2086, 1987.

    Article  ADS  Google Scholar 

  • Pusey, P.N. and van Megen, W., Dynamic light scattering by non-ergodic media, Physica A, 157, 705–741, 1989.

    Article  ADS  Google Scholar 

  • Pusey, P.N., van Megen, W., Bartlett, P., Ackerson, B.J., Rarity, J.G., and Underwood, S.M., Structure of crystals of hard colloidal spheres, Phys. Rev. Lett., 63, 2753–2756, 1989.

    Article  ADS  Google Scholar 

  • Rahman, A., Correlation in the motions of atoms in liquid argon, Phys. Rev. A, 136, 405–411, 1964.

    ADS  Google Scholar 

  • Rick, S.W. and Haymet, A.D.J., Density functional theory for the freezing of Lennard-Jones binary mixtures, J. Chem. Phys., 90, 1188–1199, 1989.

    Article  ADS  Google Scholar 

  • Sanders, J.V., Close-packed structures of spheres of two different sizes. I. Observations on natural opal, Philos, Mag. A, 42, 705–720, 1980.

    Article  ADS  Google Scholar 

  • Schatzel, K. and Ackerson, B.J., Observation of density fluctuations during crystallization, Phys. Rev. Lett., 68, 337–340, 1992.

    Article  ADS  Google Scholar 

  • Smithline, S.J. and Haymet, A.D.J., Density functional theory for the freezing of 1:1 hard sphere mixtures, J. Chem. Phys., 86, 6486–6494, 1987.

    Article  ADS  Google Scholar 

  • Smithline, S.J. and Haymet, A.D.J., Erratum: density functional theory for the freezing of 1:1 hard sphere mixtures, J. Chem. Phys., 88, 4104, 1988.

    Article  ADS  Google Scholar 

  • Squires, G.L., Introduction to the Theory of Thermal Neutron Scattering, Cambridge University Press, Cambridge, 1978.

    Google Scholar 

  • Thompson, P. and Grest, G., Granular flow: friction and the dilatancy transition, Phys. Rev. Lett., 67, 1751–1754, 1991.

    Article  ADS  Google Scholar 

  • Ullo, J. and Yip, S., Dynamical correlations in dense metastable fluids, Phys. Rev. A, 39, 5877–5886, 1989.

    Article  ADS  Google Scholar 

  • Underwood, S.M., Taylor, J.R., and van Megen, W., Sterically stabilized non-aqueous suspensions as hard-sphere systems, 1993, in press.

    Google Scholar 

  • van Megen, W. and Pusey, P.N., 1991a, unpublished results.

    Google Scholar 

  • van Megen, W. and Pusey, P.N., Dynamic light scattering study of the glass transition in colloidal suspensions, Phys. Rev. A, 43, 5429–5441, 1991b.

    Article  ADS  Google Scholar 

  • van Megen, W. and Snook, I., Diffusion in concentrated monodisperse colloidal solutions, Faraday Discuss. Chem. Soc, 76, 151–163, 1983.

    Article  Google Scholar 

  • van Megen, W. and Snook, I., Equilibrium properties of suspensions, Adv. Colloid Interface Sci., 21, 119–194, 1984.

    Article  Google Scholar 

  • van Megen, W. and Snook, I., Dynamic computer simulation of concentrated dispersions, J. Chem. Phys., 88, 1185–1191, 1988.

    Article  ADS  Google Scholar 

  • van Megen, W. and Underwood, S.M., Tracer diffusion in concentrated colloidal dispersions. II. Non-Gaussian effects, J. Chem. Phys., 88, 7841–7846, 1988.

    Article  ADS  Google Scholar 

  • van Megen, W. and Underwood, S.M., Tracer diffusion in concentrated colloidal dispersions. III. Mean squared displacements and tracer diffusion coefficients, J. Chem. Phys., 91, 552–559, 1989.

    Article  ADS  Google Scholar 

  • van Megen, W. and Underwood, S.M., Motions of particles in concentrated dispersion as observed by dynamic light scattering, Langmuir, 6, 35–42, 1990.

    Article  Google Scholar 

  • van Megen, W. and Underwood, S.M., Dynamic light scattering study of hard colloidal spheres, Phys. Rev., E, 47, 248–261, 1993.

    Article  ADS  Google Scholar 

  • van Megen, W., Underwood, S.M., and Snook, I., Tracer diffusion on concentrated colloidal dispersions, J. Chem. Phys., 85, 4065–4072, 1986.

    Article  ADS  Google Scholar 

  • van Megen, W., Underwood, S.M., and Pusey, P.N., Non-ergodicity parameters in colloidal glasses, Phys. Rev. Lett., 67, 1586–1589, 1991.

    Article  ADS  Google Scholar 

  • Verlet, L. and Weis, J.J., Equilibrium theory of simple liquids, Phys. Rev. A, 5, 939–952, 1972.

    Article  ADS  Google Scholar 

  • Young, D.A. and Alder, B.J., Studies in molecular dynamics XIII. Singlet and pair distribution functions for hard-disc and hard-sphere solids, J. Chem. Phys., 60, 1254–1267, 1974.

    Article  ADS  Google Scholar 

  • Young, D. A. and Alder, B. J., Studies in molecular dynamics. XVII. Phase diagrams for “step” potentials in two and three dimensions, J. Chem. Phys., 70, 473–481, 1979.

    Article  ADS  Google Scholar 

  • Yoshimura, S. and Hachisu, S., Order formation in binary mixtures of monodisperse lattices, Prog. Colloid Polymer Sci., 68, 59–70, 1983.

    Article  Google Scholar 

  • Zeng, X.C. and Oxtoby, D.W., Density functional theory for freezing of a binary hard sphere liquid, J. Chem. Phys., 93, 4357–4363, 1990.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Bartlett, P., van Megen, W. (1994). Physics of Hard-Sphere Colloidal Suspensions. In: Mehta, A. (eds) Granular Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4290-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4290-1_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8725-4

  • Online ISBN: 978-1-4612-4290-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics