Skip to main content

Tissue Engineering Cartilage and Bone

  • Chapter
Synthetic Biodegradable Polymer Scaffolds

Abstract

Tissue engineering is an emerging multidisciplinary field in which the material properties of synthetic compounds are manipulated to enable delivery of an aggregate of dissociated cells into a host in a manner that will result in the formation of new functional tissue. A high density of viable, dissociated functional cells can be seeded onto synthetic, biocompatible, biodegradable polymers of an appropriate chemical composition and physical configuration, which act as scaffolds. They allow diffusion of nutrients to the cells, as well as cell-to cell contact and can then be transplanted into animals. The purpose of this new field of research is to repair, replace, maintain, or enhance the function of a particular tissue or organ. Cells can be isolated from an individual, expanded in vitro and/or modified by gene therapy to replace a defective gene, and reimplanted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Asselmeier MA, Caspari RB, Bottenfield S (1993): A review of allograft processing and sterilization techniques and their role in transmission of human immunodeficiency virus. Am J Sports Med 21:170–75

    Article  PubMed  CAS  Google Scholar 

  • Bentley G, Greer RG III (1971): Homotransplantation of isolated epiphyseal and articular cartilage chondrocytes into joint surfaces of rabbits. Nature 230: 385

    Article  PubMed  CAS  Google Scholar 

  • Brittberg M, Lindahl A, Nilsson A, et al (1994): Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. NEJM 331:889–95

    Article  PubMed  CAS  Google Scholar 

  • Bruns J, Kersten P, Lierse W, et al (1992): Autologous rib perichondrial grafts in experimentally induced osteochondral lesions in the sheep knee joint: Morphological results. Virchows Archiv A Pathol Anat 421:1–8

    Article  CAS  Google Scholar 

  • Cao YL, Vacanti JP (1996): Unpublished data

    Google Scholar 

  • Chesterman PJ, Smith AU (1968): Simon SR, ed. Homotransplantation of articular cartilage and isolated chondrocytes: An experimental study in rabbits. J Bone Joint Surg 50B: 184–97

    Google Scholar 

  • Cocke WM Jr (1995): Radial composite chondrocutaneous flap for ear reconstruction. Am Surgeon 61:347–9

    PubMed  Google Scholar 

  • Costantino PD, Friedman CD, Jones K, et al (1992): Experimental hydroxy apatite cement cranioplasty. Plast Reconst Surg 90:174–91

    Article  PubMed  CAS  Google Scholar 

  • Dahlin C, Alberius P, Linde A (1991): Osteopromotion for cranioplasty: An experimental study in rats using a membrane technique.J Neurosurg 74:487–91

    Article  PubMed  CAS  Google Scholar 

  • Davis MA, Ettinger WH, Neuhaus JM, et al (1989): The association of knee injury and obesity with unilateral and bilateral osteoarthritis of the knee. Am J Epidemiol 130:278–88

    PubMed  CAS  Google Scholar 

  • Destro MW, Speranzini MB (1994): Total reconstruction of the auricle after traumatic amputation. Plastic Reconstr Surg 94: 859–64

    Article  Google Scholar 

  • Duke PJ, Daane EL, Montufar-Solis D (1993): Studies of chondrogenesis in rotating systems. J Cell Biochem51:274–82

    Article  PubMed  CAS  Google Scholar 

  • Freed LE, Marquis JC, Nohria A, et al (1993a): Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J Biomed Mat Res 27:11–23

    Article  CAS  Google Scholar 

  • Freed LE, Vunjak-Novakovic G, Langer R (1993b): Cultivation of cell-polymer cartilage implants in bioreactors.J Cell Biochem 51:257–64

    Article  PubMed  CAS  Google Scholar 

  • Friedlander GE, Mankin HJ (1984): Transplantation of osteochondral allografts. Ann Rev Med 35:311–24

    Article  Google Scholar 

  • Fuller JA, Ghadially FN (1972): Ultrastructural observations on surgically produced partial-thickness defects in articular cartilage. Clin Orthop 86:193–205

    Article  PubMed  CAS  Google Scholar 

  • Gatti AM, Zaffe D, Poli GP (1990): Behaviour of tircalcium phosphate and hy-droxyapatite granules in sheep bone defects. Biomaterials 11:513–17

    Article  PubMed  CAS  Google Scholar 

  • Ghadially FN, Thomas I, Oryschak AF, et al (1977): Long-term results of superficial defects in articular cartilage: A scanning electron-microscope study. J Pathol 121: 213–17

    Article  PubMed  CAS  Google Scholar 

  • Goodwin TJ, Prewett TL, Wolf DA, et al (1993): Reduced shear stress: A major component in the ability of mammalian tissue to form three-dimensional assemblies in simulated microgravity. J Cell Biochem 51:301–11

    Article  PubMed  CAS  Google Scholar 

  • Grande DA, Southerland SS, Manji R, et al (1995): Repair of Articular Cartilage Defects Using Mesenchymal Stem Cells. Tissue Engirt 1:345–354

    Article  CAS  Google Scholar 

  • Green WT Jr (1977): Articular cartilage repair: Behavior of rabbit chondrocytes durng tissue culture and subsequent allografting. Clin Orthop 124:237

    Google Scholar 

  • Homminga GN, Buma P, Koot HWJ, (1993): Chondrocyte behavior in fibrin glue. Acta Orthop Scand 64:441–45

    Article  PubMed  CAS  Google Scholar 

  • Hsieh PC, Thanapipatsiri S, Anderson P, et al (1996): Presented at the 42nd annual meeting of the Orthopaedic Research Society, Atlanta, GA, february, 1996

    Google Scholar 

  • Itay S, Abramovici A, Nevo Z (1987): Use of cultured embryonal chick epiphyseal chondrocytes as grafts for defects in chick articular cartilage. Clin Orthop 220: 284–303

    PubMed  Google Scholar 

  • Kang R, Marui T, Nita IM, et al (1996): Gene therapy for full thickness articular cartilage defects. Presented at the 42nd annual meeting of the Orthopaedic Research Society, Atlanta, GA

    Google Scholar 

  • Kataoka H, Urist MR (1993): Transplant of bone marrow and muscle-derived connective tissue cultures in diffusion chambers for bioassay of bone morphogenetic protein. Clin Orthop 286:262–70

    PubMed  Google Scholar 

  • Kim WS, Vacanti JP, Upton J, et al (1993): Potential of Cold-preserved Chondrocytes for Cartilage Reconstruction. Plastic Surgery Research Council

    Google Scholar 

  • Kim WS, Vacanti JP, Cima L, et al (1994): Cartilage engineered in predetermined shapes employing cell transplantation on synthetic biodegradable polymers. Plast Reconstr Surg 94:233–37

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Yasui N, Oshawa S, et al (1983): Chondrocytes embedded in collagen gels maintain cartilage phenotype during long-term cultures. Clin Orthop 186: 231–39

    Google Scholar 

  • Klement BJ, Spooner BS (1993): Utilization of microgravity bioreactors for differentiation of mammalian skeletal tissue. J Cell Biochem 51:252–56

    Article  PubMed  CAS  Google Scholar 

  • Klement BJ, Spooner BS (1994): Premetatarsal skeletal development in tissue culture at unit- and microgravity. J Exp Zool 269:230–41

    Article  PubMed  CAS  Google Scholar 

  • Krukowski M, Shively RA, Osdoby P, et al (1990): Stimulation of craniofacial and intramedullary bone formation by negatively charged beads. J Oral Maxillofac Surg 48:468–75

    Article  Google Scholar 

  • Langer R, Vacanti JP (1993): Tissue engineering. Science 260: 920–6

    Article  PubMed  CAS  Google Scholar 

  • Lipman JM, McDevitt CA, Sokoloff A (1983): Xenografts of articular chondrocytes in the nude mouse. Calcif Tissue Int 35: 767

    Article  PubMed  CAS  Google Scholar 

  • Mankin HJ (1982): Current concepts review. The response of articular cartilage to mechanical injury. J Bone Joint Surg 64A: 460–66

    Google Scholar 

  • Mankin HJ, Gebhardt MC, Tomford WW (1987): The use of frozen cadaveric allografts in the management of patients with bone tumors of the extremities. Orthop Clin N Am 18: 275–89

    CAS  Google Scholar 

  • Matsusue Y, Yamamoto T, Hama H (1993): Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption.Arthroscopy 9:318–21

    Article  PubMed  CAS  Google Scholar 

  • Meachim G (1963): The effect of scarifcation on articular cartilage in the rabbit. J Bone Joint Surg 45B: 150–161

    Google Scholar 

  • Miura Y, Fitzsimmons JS, Commisso CN, et al (1994): Enhancement of periosteal chondrogenesis in vitro. Dose response from transforming growth factor beta 1 (TGF-beta 1). Clin Orthop Rel Res 301: 271–80

    Google Scholar 

  • Mooney KM (1995): External ear reconstruction with autogenous rib cartilage. Plastic Reconstr Surg 15: 92–7

    CAS  Google Scholar 

  • Moskalewski S (1991): Transplantation of isolated chondrocytes. Clin Orthop 272: 16–20

    PubMed  Google Scholar 

  • Mulliken JB, Gowacki J (1980): Induced osteogenesis for repair and construction in the craniofacial region. Plast Reconstr Surg 65:553–60

    Article  PubMed  CAS  Google Scholar 

  • O’Driscoll SW, Salter RB (1984): The induction of neochondrogenesis in free intraarticular periosteal autografts under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg 66:1248–57

    PubMed  Google Scholar 

  • O’Driscoll SW, Keeley FW, Salter RB (1986): The chondrogenic potential of free autogenous periosteal grafts for biological resurfacing of major full-thickness defects in joint surfaces under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg 68:1017–35

    PubMed  Google Scholar 

  • Ono I, Gunji H, Suda K, et al (1995): Bone induction of hydroxyapatite combined with bone morphogenic protein and covered with periosteum. Plas Reconstr Surg 95:1265–72

    Article  CAS  Google Scholar 

  • Ostrum RF, Chao EYS, Bassett CAL, et al (1994): Bone injury, regeneration and repair. In: Orthopaedic Basic Science American Academy of Orthopaedic Surgeons

    Google Scholar 

  • Paige KY, Vacanti CA (1995): Engineering new tissue: Formation of neo-cartilage. Tissue Engin 1: 97–106

    Article  CAS  Google Scholar 

  • Paige KT, Cima LG, Yaremchuk MJ, et al (1995): Injectable cartilage. Plas Reconstr Surg 96:1390–98

    Article  CAS  Google Scholar 

  • Puelacher WC, Kim SW, Vacanti JP (1994): Tissue engineered growth of cartilage: The effect of varying the concentration of chondrocytes seeded onto synthetic polymer matrices. Oral Maxillofac Surg 23:49–53

    Article  CAS  Google Scholar 

  • Puelacher WC, Mooney D, Langer R, et al (1994b): Design of nasoseptal cartilage replacements synthesized from biodegradable polymers and chondrocytes. Biomaterials 15:774–78

    Article  PubMed  CAS  Google Scholar 

  • Puelacher WC, Wisser J, Vacanti CA, et al (1994c): Temporomandibular joint disc replacement made by tissue-engineered growth of cartilage. J Oral Maxillofac Surg 52:1172–77

    Article  PubMed  CAS  Google Scholar 

  • Roux FX, Brasnu D, Loty B, et al (1988): Madreporic coral: A new bone graft substitute for cranial surgery. J Neurosurg 69: 510–13

    Article  PubMed  CAS  Google Scholar 

  • Rozema FR, Bos RR, Pennings AJ, et al (1990): Poly(L-lactide) implants in repair of defects of the orbital floor: An animal study. J Oral Maxillofac Surg 48: 305–9

    Article  Google Scholar 

  • Sittinger M, Bujia J, Minuth WW (1994): Engineering of cartilage tissue using bioresorbable polymer carriers in perfusion culture. Biomaterials 15:451–56

    Article  PubMed  CAS  Google Scholar 

  • Springfield DS (1987): Massive autogenous bone grafts. Orthop Clin N Am 18: 249–56

    Google Scholar 

  • Takigawa M, Shirai E, Fukuo K, et al (1987): Chondrocytes dedifferentiated by serial monolayer culture from cartilage nodules in nude mice.Bone Mineral 2:449–62

    CAS  Google Scholar 

  • Tesch GH, Handley CJ, Cornell HJ, et al (1992): Effect of free and bound insuline- like growth factors onproteoglycan metabolism in articular cartilage explants. J Orthop Res 10:14–22

    Article  PubMed  CAS  Google Scholar 

  • Thaller SR, Hoyt J, Borjeson K et al (1993): Reconstruction of calvarial defects with organic bovine bone mineral (Bio-Oss) in a rabbit model. J Craniofae Surg 4:9–84

    Google Scholar 

  • Tsai CL, Liu TK, Fu SL, et al (1992): Preliminary study of cartilage repair with autologous periosteum and fibrin adhesive system. J Formosa Med Assoc 91: S239–45

    Google Scholar 

  • Upton J, Sohn SA, Glowacki J (1981): New cartilage derived from transplanted perichondrium: What is it? Plast Reconstr Surg 68:166–74

    Article  PubMed  CAS  Google Scholar 

  • Vacanti CA, Mikos AG (1995): Letter from the editors. Tissue Eng 1:1–2

    Article  Google Scholar 

  • Vacanti CA, Upton J (1994): Tissue engineered morphogenesis of cartilage and bone by means of cell transplantation using synthetic biodegradable polymer matrices. Clinics Plastic Surg 21:445–62

    CAS  Google Scholar 

  • Vacanti CA, Langer R, Schloo B, et al (1991): Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast Reconstr Surg 87: 753–59

    Google Scholar 

  • Vacanti CA, Cima LG, Ratkowski D, et al (1992): Tissue engineered growth of new cartilage in the shape of a human ear using synthetic polymers seeded with chondrocytes. Mat Res Soc Symp Proc 252:367–73

    Article  CAS  Google Scholar 

  • Vacanti CA, Kim WS, Mooney D (1993): Tissue engineered composites of bone and cartilage using synthetic polymers seeded with two cell types. Orthopaed Trans 18: 276

    Google Scholar 

  • Vacanti CA, Cao YL, Upton J, Vacanti JP (1994a): Neo-cartilage generated from chondrocytes isolated from 100-year-old human cartilage. Transplan Proc 2:3434- 35

    Google Scholar 

  • Vacanti CA, Kim WS, Schloo B, et al (1994b): Joint resurfacing with cartilage grown in situ from cell-polymer structures. Am J Sports Med 22:485–88

    Article  PubMed  CAS  Google Scholar 

  • Vacanti CA, Paige KT, Kim WS (1994c): Experimental tracheal replacement using tissue engineered cartilage. J Pediatr Surg 29: 201–205

    Article  PubMed  CAS  Google Scholar 

  • Vacanti JP (1988): Beyond transplantation. Arch Surg 123: 545–49

    PubMed  CAS  Google Scholar 

  • Vacanti JP, Morse MA, Saltzman WM (1988): Selective cell transplantation using bioabsorbable artificial polymers as matrices. J Pediatr Surg 23: 3

    Google Scholar 

  • Wakitani S, Kimura T, Hirooka A, et al (1989): Repair of rabbit articular cartilage surfaces with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg 63B: 529

    Google Scholar 

  • Wozney JM (1988): Novel regulators of bone formation. Molecular clones and activities.Science 242:1528

    Article  PubMed  CAS  Google Scholar 

  • Yaszemski MJ, Payne RG, Hayes WC (1995): The ingrowth of new bone tissue and initial mechanical properties of a degrading polymeric composite scaffold. Tissue Engin 1:41–52

    Article  CAS  Google Scholar 

  • Yukna RA (1990): Polymer grafts in human periodontal osseous defects. J Per iodont 61: 633–42

    CAS  Google Scholar 

  • Zimber MP, Tong B, Dunkelman N, et al (1995): TGF-beta promotes the growth of bovine chondrocytes in monolayer culture and the formation of cartilage tissue in three dimensional scaffolds. Tissue Engin 1:289–300

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Boston

About this chapter

Cite this chapter

Cao, Y., Ibarra, C., Vacanti, C.A. (1997). Tissue Engineering Cartilage and Bone. In: Atala, A., Mooney, D.J. (eds) Synthetic Biodegradable Polymer Scaffolds. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4154-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4154-6_11

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8677-6

  • Online ISBN: 978-1-4612-4154-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics