Skip to main content

Part of the book series: Springer Series in Neuropsychology ((SSNEUROPSYCHOL))

Abstract

In recent years the study of spatial memory has occupied the attention of many cognitive scientists from a wide range of disciplines. For some, the study of spatial memory is an end in its own right. For others, measures of spatial learning and memory provide a convenient index of the development and decline of intellectual functions and their neurobiological correlates throughout the life span. In the present review we attempt to summarize current knowledge of the neural mechanisms underlying spatial behavior, drawing on information from studies of nonhuman species as well as humans. Such an endeavor is beset by all the usual uncertainties regarding comparability of behavioral tests and neuroanatomical homologies. In addition, the comparative neuropsychology of spatial behavior is complicated by the rather different perspectives of space imposed on animals of vastly different size. The view of the world of rats and humans is obviously quite different. In an attempt to minimize confusion resulting from differing motivational conditions we arbitrarily excluded studies in which escape from or avoidance of electric shock served as reinforcement because aversive conditions of this sort have rarely been used in species other than rats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abraham, L., Potegal, M., & Miller, S. (1983). Evidence for caudate nucleus involvement in an egocentric task: Return from passive transport. Physiological Psychology, 11, 11–17.

    Google Scholar 

  • Aggleton, J.P., & Mishkin, M. (1983). Visual recognition impairment following medial thalamic lesions in monkeys. Neuropsychologia, 21, 189–197.

    PubMed  Google Scholar 

  • Barnes, C.A. (1979). Memory deficits associated with senescence: A behavioral and electrophysiological study in the rat. Journal of Comparative and Physiological Psychology, 93, 74–104.

    PubMed  Google Scholar 

  • Barnes, C.A., McNaughton, B.L., & O’Keefe, J. (1983). Loss of place specificity in hippocampal complex spike cells of sensecent rats. Neurobiology of Aging, 4, 113–119.

    PubMed  Google Scholar 

  • Barnes, C.A., Nadel, L., & Honig, W.K. (1980). Spatial memory deficit in sensecent rats. Canadian Journal of Psychology, 34, 29–39.

    PubMed  Google Scholar 

  • Bartus, R.T., & Johnson, H.R. (1976). Short-term memory in the rhesus monkey: Disruption from the anti-cholinergic scopolamine. Pharmacology, Biochemistry and Behavior, 5, 39–46.

    Google Scholar 

  • Battig, K., Rosvold, H.E., & Mishkin, M. (1960). Comparison of frontal and caudate lesions on delayed response and delayed alternation in monkeys. Journal of Comparative and Physiological Psychology, 53, 400–404.

    PubMed  Google Scholar 

  • Beatty, W.W. (1985). Assessing remote memory for space: The Fargo Map Test. Journal of Clinical and Experimental Neuropsychology, 7, 640.

    Google Scholar 

  • Beatty, W.W., & Bierley, R.A. (1985). Scopolamine degrades working memory but spares reference memory in the radial maze: Dissimilarity of anticholinergic effect and restriction of distal visual cues. Pharmacology, Biochemistry and Behavior, 23, 1–6.

    Google Scholar 

  • Beatty, W.W., Bierley, R.A., & Boyd, J.G. (1985). Preservation of accurate spatial memory in aged rats. Neurobiology of Aging, 6, 219–225.

    PubMed  Google Scholar 

  • Beatty, W.W., Maclnnes, W.D., Porphyris, H. Tröster, A.I., & Cermak, L.S. (in press). Preserved topographical memory following right temporal lobectomy.

    Google Scholar 

  • Beatty, W.W., & Rush, J.R. (1983). Spatial working memory in rats: Effects of monoamine antagonists. Pharmacology, Biochemistry and Behavior, 18, 7–12.

    Google Scholar 

  • Beatty, W.W., & Shavalia, D.A. (1980). Spatial memory in rats: Time course of working memory and effect of anesthetics. Behavioral and Neural Biology, 28, 454–462.

    PubMed  Google Scholar 

  • Becker, J.T., Walker, J.A., & Olton, D.S. (1980). Neuroanatomical basis of spatial memory. Brain Research, 200, 307–320.

    PubMed  Google Scholar 

  • Bengelloun, W.A., Nelson, D.J., Gerth, J.M., & Beatty, W.W. (1975). Variations in magnitude of reward and position reversal learning following septal lesions in the rat. Physiological Psychology, 3, 240–244.

    Google Scholar 

  • Benton, A. (1985). Visuoperceptual, visuospatial, and visuoanstructive disorders. In K.M. Heilman & E. Valenstein (Eds.). Clinical Neuropsychology ( 2nd ed.) New York: Oxford.

    Google Scholar 

  • Benton, A.L., Levin, H.S., & Van Allen, M.W. (1974). Geographic orientation in patients with unilateral cerebral disease. Neuropsychologia, 12, 183–191.

    PubMed  Google Scholar 

  • Bierley, R.A., Kesner, R.P., & Novak, J.M. (1983). Episodic long term memory in the rat: Effects of hippocampal stimulation. Behavioral Neuroscience, 97, 42–48.

    PubMed  Google Scholar 

  • Bierley, R.A., Rixen, G.J., Tröster, A.I., & Beatty, W.W. (1986). Preserved spatial memory in old rats survives ten months without training. Behavioral and Neural Biology, 45, 223–229.

    PubMed  Google Scholar 

  • Bondareff, W., & Geinisman, Y. (1976). Loss of synapses in the dentate gyrus of the senescent rat. American Journal of Anatomy, 145, 129–136.

    PubMed  Google Scholar 

  • Brody, B.A., & Pribram, K.H. (1978). The role of frontal and parietal cortex in cognitive processing: Tests of spatial and sequential functions. Brain, 101, 607–633.

    PubMed  Google Scholar 

  • Brouwers, P., Cox, C., Martin, A., Chase, T., & Fedio, P. (1984). Differential perceptual-spatial impairment in Huntington’s and Alzheimer’s dementias. Archives of Neurology, 41, 1073–1076.

    PubMed  Google Scholar 

  • Butters, N. (1984). Alcoholic Korsakoff’s Syndrome: An update. Seminars in Neurology, 4, 226–244.

    Google Scholar 

  • Butters, N., & Barton, M. (1970). Effect of parietal lobe damage on performance of reversible operations in space. Neuropsychologia, 8, 205–214.

    PubMed  Google Scholar 

  • Butters, N., & Pandya, D. (1969). Retention of delayed-alternation: Effect of selective lesions of sulcus principalis. Science, 165, 1271–1273.

    PubMed  Google Scholar 

  • Butters, N., Pandya, D., Sanders, K., & Dye, P. (1971). Behavioral deficits in monkeys after selective lesions within the middle third of the sulcus principalis. Journal of Comparative and Physiological Psychology, 76, 8–14.

    PubMed  Google Scholar 

  • Butters, N., Soeldner, C., & Fedio, P. (1972). Comparison of parietal and frontal lobe spatial deficits in man: Extrapersonal vs. personal (egocentric) space. Perceptual and Motor Skills, 34, 27–34.

    PubMed  Google Scholar 

  • Canaran, A.G.M. (1983). Stylus-maze performance in patients with frontal-lobe lesions and relationship to verbal and spatial abilities. Neuropsychologia, 21, 375–382.

    Google Scholar 

  • Cermak, L.S., & Butters, N.M. (1972). The role of interference and encoding in the short-term memory of Korsakoff patients. Neuropsychologia, 10, 89–95. Charness, N. (1981). Visual short-term memory and aging in chess players. Journal of Gerontology, 36, 615–619.

    Google Scholar 

  • Chrobak, J.J., De Haves, D.L., & Walsh, T.J. (1985). Depletion of brain nor-epinephrine with DSP-4 does not alter acquisition or performance of a radial-arm maze task. Behavioral and Neural Biology, 44, 144–150.

    PubMed  Google Scholar 

  • Cooper, A., & Marshall, P. (1985). Spatial location judgments as a function of William W. Beatty and Alexander I. Tröster ntention to learn, and mood state: An evaluation of an alleged automatic encoding operation. American Journal of Psychology, 98, 261–269.

    PubMed  Google Scholar 

  • Corkin, S. (1965). Tactually guided maze learning in man: Effects of unilateral cortical excisions and bilateral hippocampal lesions. Neuropsychologia, 3, 339–351.

    Google Scholar 

  • Corkin, S. (1984). Lasting consequences of bilateral medial temporal lobectomy: Clinical course and experimental findings in H.M. Seminars in Neurology, 4, 249–259.

    Google Scholar 

  • Davis, H.P., Idowu, A., & Gibson, G.E. (1983). Improvement of 8-arm maze performance in aged Fischer 344 rats with 3,4-diaminopyridine. Experimental Aging Research, 9, 211–214.

    PubMed  Google Scholar 

  • De Renzi, E., Faglioni, P., & Previdi, P. (1977). Spatial memory and hemispheric locus of lesion. Cortex, 13, 424–433.

    PubMed  Google Scholar 

  • De Renzi, E., Faglioni, P., & Villa, P. (1977). Topographical amnesia. Journal of Neurology, Neurosurgery, and Psychiatry, 40, 498–505.

    Google Scholar 

  • De Renzi, E., & Nichelli, P. (1975). Verbal and non-verbal short-term memory impairment following hemispheric damage. Cortex, 11, 341–354.

    PubMed  Google Scholar 

  • de Toledo-Morrell, L., Morrell, F., & Fleming, S. (1984). Age-dependent deficits in spatial memory are related to impaired hippocampal kindling. Behavioral Neuroscience, 98, 902–907.

    PubMed  Google Scholar 

  • de Toledo-Morrell, L., Morrell, F., Fleming, S., & Cohen, M.M. (1984). Pentoxifylline reverses age-related deficits in spatial memory. Behavioral and Neural Biology, 42, 1–9.

    PubMed  Google Scholar 

  • Delacour, J. (1971). Effects of medial thalamic lesions in the rat: A review and an interpretation. Neuropsychologia, 9, 157–174.

    PubMed  Google Scholar 

  • Divac, I., Rosvold, H.E., & Szwarcbart, M.K. (1967). Behavioral effects of selective ablation of the caudate nucleus. Journal of Comparative and Physiological Psychology, 63, 184–190.

    PubMed  Google Scholar 

  • Fuster, J. (1980). The Prefrontal Cortex: Anatomy, Physiology and Neuropsychology of the Frontal Lobe, New York: Raven Press.

    Google Scholar 

  • Gaffan, D. (1972). Loss of recognition memory in rats with lesions of the fornix. Neuropsychologia, 10, 327–341.

    PubMed  Google Scholar 

  • Gage, F.H., Dunnett, S.B., & Bjorklund, A. (1984). Spatial learning and motor deficits in aged rats. Neurobiology of Aging, 5, 43–48.

    PubMed  Google Scholar 

  • Gage, F.H., Kelly, P.A.T., & Bjorklund, A. (1984). Regional changes in brain glucose metabolism reflect cognitive impairments in aged rats. Journal of Neuroscience, 4, 2856–2865.

    PubMed  Google Scholar 

  • Godding, P.R., Rush, J.R., & Beatty, W.W. (1982). Scopolamine does not disrupt spatial working memory in rats. Pharmacology, Biochemistry and Behavior, 16, 919–923.

    Google Scholar 

  • Goldman, P.S., Rosvold, H.E., Vest, B., & Galkin, T.W. (1971). Analysis of the delayed-alternation deficit produced by dorsolateral prefrontal lesions in the Rhesus monkey. Journal of Comparative and Physiological Psychology, 77, 212–220.

    PubMed  Google Scholar 

  • Goodrick, C.L. (1968). Learning, retention, and extinction of a complex maze habit for mature-young and senescent Wistor albino rats. Journal of Gerontology, 23, 298–304.

    PubMed  Google Scholar 

  • Gray, J.A., & McNaughton, N. (1983). Comparison between the behavioral effects of septal and hippocampal lesions. Neuroscience and Biobehavioral Reviews, 7, 119–188.

    PubMed  Google Scholar 

  • Hagen, J.J., Alper, J.E., Morris, R.G.M., & Iversen, S.D. (1983). The effects of central catecholamine depletions on spatial learning in rats. Behavioural Brain Research, 9, 83–104.

    Google Scholar 

  • Handelman, G.E., & Olton, D.S. (1981). Spatial memory following damage to hippocampal CA3 pyramidal cells with kainic acid: Impairment and recovery following preoperative training. Brain Research, 217, 41–57.

    Google Scholar 

  • Harrell, L.E., Barlow, T.S., Miller, M., Haring, J.H., & Davis, J.N. (1984). Facilitated reversal learning of a spatial-memory task by medial septal injections of 6-hydroxydopamine. Experimental Neurology, 85, 69–77.

    PubMed  Google Scholar 

  • Heilman, K.M., Watson, R.T., & Valenstein, E. (1985). Neglect and related disorders. In K.M. Heilman and E. Valenstein (Eds.), Clinical Neuropsychology, ( 2nd ed. ), New York: Oxford.

    Google Scholar 

  • Hepler, D.J., Olton, D.S., Wenk, G.L., & Coyle, J.T. (1985). Lesions in nucleus basalis magnocellularis and medial septal area of rats produce qualitatively similar memory impairments. Journal of Neuroscience, 5, 866–873.

    PubMed  Google Scholar 

  • Holmes, E.J., Butters, N., Jacobson, S., & Stein, B.M. (1983). An examination of mammillary-body lesions on reversal learning sets in monkeys. Physiological Psychology, 11, 159–163.

    Google Scholar 

  • Holmes, E.J., Jacobson, S., Stein, B.M., & Butters, N. (1983). Ablations of the mammillary nuclei in monkeys: Effects on postoperative memory. Experimental Neurology, 81, 97–113.

    PubMed  Google Scholar 

  • Isaacson, R.L., Nonneman, A.J., & Schmaltz, L.W. (1968). Behavioral and anatomical sequellae of damage to the infant nervous system. In R.L. Isaacson (Ed.), The Neuropsychology of Development. New York: Wiley.

    Google Scholar 

  • Isseroff, A., Rosvold, H.E., Galkin, T.W., & Goldman-Rakic (1982). Spatial memory impairments following damage to the mediodorsal nucleus of the thalamus in rhesus monkeys. Brain Research, 232, 97–113.

    PubMed  Google Scholar 

  • Jacobsen, C.F. (1935). Functions of the frontal association area in primates. Archives of Neurology and Psychiatry, 33, 558–569.

    Google Scholar 

  • Jarrard, L.E. (1975). Role of interference in retention by rats with hippocampal lesions. Journal of Comparative and Physiological Psychology, 89, 400–408.

    PubMed  Google Scholar 

  • Jarrard, L.E. (1978). Selective hippocampal lesions: differential effect on performance by rats of a spatial task with preoperative versus postoperative training. Journal of Comparative and Physiological Psychology, 92, 1119–1127.

    PubMed  Google Scholar 

  • Jarrard, L.E. (1983). Selective hippocampal lesions and behavior: Effects of kainic acid lesions on performance of place and cue tasks. Behavioral Neuroscience, 97, 873–889.

    PubMed  Google Scholar 

  • Jarrard, L.E. (1985). Selective hippocampal lesions and behavior: Implications for current research and theorizing. In R.L. Isaacson & K. Pribram (Eds.), The Hippocampus. New York: Plenum.

    Google Scholar 

  • Jarrard, L.E., Okaichi, H., Steward, O., & Goldschmidt, R.B. (1984). On the role of the hippocampal connections in the performance of place and cue tasks: Comparisons with damage to the hippocampus. Behavioral Neuroscience, 98, 946–954.

    PubMed  Google Scholar 

  • Jones, B., & Mishkin, M. (1972). Lesions and the problem of stimulus-reinforcement associations. Experimental Neurology, 36, 363–377.

    Google Scholar 

  • Jones-Gotman, M. (1986a). Memory for designs: The hippocampal contribution. Neuropsychologia, 24, 193–203.

    PubMed  Google Scholar 

  • Jones-Gotman, M. (1986b). Right hippocampal excision impairs learning and recall of a list of abstract designs. Neuropsychologia, 24, 659–670.

    PubMed  Google Scholar 

  • Josiassen, R.C., Curry, L.M., & Mancall, E.L. (1983). Development of neuro-psychological deficits in Huntington’s disease. Archives of Neurology, 40, 791–796.

    PubMed  Google Scholar 

  • Kesler, J., Markowitsch, H.J., & Otto, B. (1982). Subtle but distinct impairments of rats with chemical lesions in the thalamic mediodorsal nucleus tested in a radial arm maze. Journal of Comparative and Physiological Psychology, 96, 712–720.

    Google Scholar 

  • Kesner, R.P., DiMattia, B.V., & Crutcher, K.A. (1987). Evidence for neocortical involvement in reference memory. Behavioral and Neural Biology, 47, 40–53.

    PubMed  Google Scholar 

  • Knowlton, B., McGowan, M., Olton, D.S., & Gamzu, E. (1985). Hippocampal stimulation disrupts spatial working memory even 8 hr after acquisition. Behavioral and Neural Biology, 44, 325–337.

    PubMed  Google Scholar 

  • Knowlton, B.J., Wenk, G.L., Olton, D.S., & Coyle J.T. (1985). Basal forebrain lesions produce a dissociation of trial-dependent and trial-independent memory performance. Brain Research, 345, 315–321.

    PubMed  Google Scholar 

  • Kojima, S., Kojima, M., & Goldman-Rakic, P.S. (1982). Operant analysis of memory loss in monkeys with prefrontal lesions. Brain Research, 248, 51–59.

    PubMed  Google Scholar 

  • Kolb, B. (1977). Studies on the caudate-putamen and the dorsomedial thalamic nucleus of the rat: Implications for mammalian frontal-lobe functions. Physiology and Behavior, 18, 237–244.

    PubMed  Google Scholar 

  • Kolb, B. (1984). Functions of the frontal cortex of the rat: A comparative review. Brain Research Reviews, 8, 65–98.

    Google Scholar 

  • Kolb, B., Pittman, K., Sutherland, R.J., & Whishaw, I.Q. (1982). Dissociation of the contributions of the prefrontal cortex and dorsomedical thalamic nucleus to spatially guided behavior in the rat. Behavioural Brain Research, 6, 365–378.

    PubMed  Google Scholar 

  • Kolb, B., Sutherland, R.J., & Whishaw, I.Q. (1983). A comparison of the contribution of the frontal and parietal association cortex to spatial localization in rats. Behavioral Neuroscience, 97, 13–27.

    PubMed  Google Scholar 

  • Landfield, P.W., Rose, G., Sandles, L., Wohlstader, T.C., & Lynch, G. (1977). Patterns of astroglial hypertrophy and neuronal degeneration in the hippo-campus of aged, memory-deficient rats. Journal of Gerontology, 32, 3–12.

    PubMed  Google Scholar 

  • Lansdell, H.C. (1968). Effect of extent of temporal lobe ablations on two lateralized deficits. Physiology and Behavior, 3, 271–273.

    Google Scholar 

  • Light, L.L., & Zelinski, E.M. (1983). Memory for spatial information in young and old adults. Developmental Psychology, 19, 901–906.

    Google Scholar 

  • Lippa, A.S., Pelham, R.W., Beer, B., Critchett, D.J., Dean, R.L., & Bartus, R.T. (1980). Brain cholinergic dysfunction and memory in aged rats. Neurobiology of Aging, 2, 165–172.

    Google Scholar 

  • Mahut, H. (1971). Spatial and object reversal learning in monkeys with partial temporal lobe ablations. Neuropsychologia, 9, 409–424.

    PubMed  Google Scholar 

  • Mahut, H., & Cordeau, J.P. (1983). Spatial reversal deficit after amygdalo—hippocampal ablations. Experimental Meurology, 7, 426–434.

    Google Scholar 

  • Mahut, H., & Zola, S.M. (1973). A nonmodality specific impairment in spatial learning after fornix lesions in monkeys. Neuropsychologia, 11, 255–269.

    PubMed  Google Scholar 

  • Mandler, J.M., Seegmiller, D., & Day, J. (1977). On the coding of spatial infor-mation. Memory and Cognition, 5, 10–16.

    Google Scholar 

  • Maki, W.S., Beatty, W.W., Hoffman, N., Bierley, R.A., & Clouse, B.A. (1984). Spatial memory over long retention intervals: Nonmemorial factors are not necessary for accurate performance on the radial maze by rats. Behavioral and Neural Biology, 41, 1–6.

    PubMed  Google Scholar 

  • Maki, W.S., Brokofsky, S. & Berg, B. (1979). Spatial memory in rats: Resistance to retroactive interference. Animal Learning and Behavior, 7, 25–30.

    Google Scholar 

  • Markowitsch, H.J. (1982). Thalamic mediodorsal nucleus and memory: A critical evaluation of studies in animals and man. Neuroscience and Biobehavioral Reviews, 6, 351–380.

    PubMed  Google Scholar 

  • Means, L.W., Hershey, A.E., Waterhouse, G.J., & Lane, C.J. (1975). Effects of dorsomedial thalamic lesions on spatial discrimination reversal in the rat. Physiology and Behavior, 14, 725–729.

    PubMed  Google Scholar 

  • Milner, A.D., Ockleford, E.M., & Dewar, W. (1977). Visuo-spatial performance following posterior parietal and lateral frontal lesions in stumptail macaques. Cortex, 13, 350–360.

    PubMed  Google Scholar 

  • Milner, B. (1965). Visually guided maze learning in man: Effect of bilateral hippocampal, bilateral frontal and unilateral cerebral lesions. Neuropsychologia, 3, 317–338.

    Google Scholar 

  • Milner, B. (1974). Hemispheric specialization: Scope and limits. In: F.O. Schmitt & F.G. Worden (Eds.), The Neurosciences Third Study Program. Cambridge, MA: MIT Press.

    Google Scholar 

  • Mishkin, M. (1954). Visual discrimination performance following partial ablations of the temporal lobe: I. Ventral vs. lateral. Journal of Comparative and Physiological Psychology, 47, 14–20.

    PubMed  Google Scholar 

  • Mishkin, M. (1978). Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature, 273, 297–298.

    PubMed  Google Scholar 

  • Mishkin, M., Vest, B., Waxier, M., & Rosvold, H. (1969). A reexamination of the effects of frontal lesions on object alternation. Neuropsychologia, 7, 357–363.

    Google Scholar 

  • Morris, R.G.M. (1981). Spatial localization does not require the presence of local cues. Learning and Motivation, 12, 239–260.

    Google Scholar 

  • Morris, R.G.M., Garrud, P., Rawlins, J.N.P., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297, 681–683.

    PubMed  Google Scholar 

  • Morrow, L., Ratcliff, G., Johnston, C. (1985). Externalising spatial knowledge in patients with right hemisphere lesions. Cognitive Neuropsychology, 2, 265–273.

    Google Scholar 

  • Murray, C.L., & Fibiger, H.C. (1985). Learning and memory deficits after lesions of the nucleus basalis magnocellularis: Reversal by physostigmine. Neuroscience, 14, 1025–1032.

    PubMed  Google Scholar 

  • Newcombe, F. (1985). Neuropsychology qua interface. Journal of Clinical and Experimental Neuropsychology, 7, 663–681.

    PubMed  Google Scholar 

  • Newcombe, F., & Russell, W.R. (1969). Dissociated visual perceptual and spatial deficits in focal lesions of the right hemisphere. Journal of Neurology, Neurosurgery, and Psychiatry, 32, 73–81.

    Google Scholar 

  • Niki, H. (1966). Response perseveration following the hippocampal ablation in the rat. Japanese Psychological Research, 8, 1–9.

    Google Scholar 

  • O’Keefe, J. (1976). Place units in the hippocampus of freely moving rats. Experimental Neurology, 51, 78–109.

    PubMed  Google Scholar 

  • O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map, Oxford: Clarendon Press.

    Google Scholar 

  • Olton, D.S., Becker, J.T., & Handelman, G.E. (1979). Hippocampus, space and memory. Behavioral and Brain Sciences, 2, 313–322.

    Google Scholar 

  • Olton, D.S., & Collison, C. (1979). Intramaze cues and “odor trails” fail to direct choice behavior on an elevated maze. Animal Learning and Behavior, 7, 221–223.

    Google Scholar 

  • Olton, D.S., Collison, C., & Werz, M.H. (1977). Spatial memory and radial arm William W. Beatty and Alexander I. Tröster maze performance in rats. Learning and Motivation, 8, 289–314.

    Google Scholar 

  • Olton, D.S., & Feustle, W.A. (1981). Hippocampal function required for non-spatial working memory. Experimental Brain Research, 41, 380–389.

    Google Scholar 

  • Olton, D.S., & Papas, B.C. (1979). Spatial memory and hippocampal function. Neuropsychologia, 17, 669–682.

    PubMed  Google Scholar 

  • Olton, D.S., Walker, J.A., & Gage, F.H. (1978). Hippocampal connections and spatial discrimination. Brain Research, 139, 295–308.

    PubMed  Google Scholar 

  • Olton, D.S., Walker, J.A., & Wolf, W.A. (1982). A disconnection analysis of hippocampal function. Brain Research, 233, 241–243.

    PubMed  Google Scholar 

  • Olton, D.S., & Wolf, W.A. (1981). Hippocampal seizures produce retrograde amnesia without a temporal gradient when they reset working memory. Behavioral and Neural Biology, 33, 437–452.

    PubMed  Google Scholar 

  • Orbach, J., Milner, B., & Rasmussen, T. (1960). Learning and retention in monkeys after amygdala-hippocampus resection. Archives of Neurology, 3, 230–251.

    PubMed  Google Scholar 

  • Oscar-Berman, M., & Zola-Morgan, S.M. (1980a). Comparative neuropsychology and Korsakoff’s syndrome. I—Spatial and visual reversal learning. Neuropsychologia, 18, 499–512.

    PubMed  Google Scholar 

  • Oscar-Berman, M., & Zola-Morgan, S.M. (1980b). Comparative neuropsychology and Korsakoff’s syndrome. II—Two-choice visual discrimination learning. Neuropsychologia, 18, 513–525.

    PubMed  Google Scholar 

  • Oscar-Berman, M., Zola-Morgan, S.M., Oberg, R.G.E., & Bonner, R.T. (1982). Comparative neuropsychology and Korsakoff’s syndrome. III—Delayed response, delayed alternation and DRL performance. Neuropsychologia, 20,. 187–202.

    Google Scholar 

  • Pandya, D.N., & Yeterian, E.H. (1984). Proposed neural circuitry for spatial memory in the primate brain. Neuropsychologia, 22, 109–122.

    PubMed  Google Scholar 

  • Passingham, R.E. (1985). Memory of monkeys (Macaca mulatta) with lesions in prefrontal cortex. Behavioral Neuroscience, 99, 3–21.

    PubMed  Google Scholar 

  • Penfield, W., & Milner, B. (1958). Memory defect produced by bilateral lesions in the hippocampal zone. Archives of Neurology and Psychiatry, 79, 475–497.

    Google Scholar 

  • Perlmutter, M., Metzger, R., Nezworski, T., & Miller, K. (1981). Spatial and temporal memory in 20 and 60 year olds. Journal of Gerontology, 36, 59–65.

    PubMed  Google Scholar 

  • Peterson, C., & Gibson, G.E. (1983). Amelioration of age-related neurochemical and behavioral deficits by 3,4-diaminopyridine. Neurobiology of Aging, 4, 25–30.

    PubMed  Google Scholar 

  • Petrides, M. (1985). Deficits on conditional associative-learning tasks after frontal and temporal lobe lesions in man. Neuropsychologia, 23, 601–614.

    PubMed  Google Scholar 

  • Petrides, M., & Iversen, S.D. (1979). Restricted posterior parietal lesions in the rhesus monkey and performance on visuospatial tasks. Brain Research, 161, 63–77.

    PubMed  Google Scholar 

  • Petrides, M., & Milner, B. (1982). Deficits on subject-ordered tasks after frontal-and temporal-lobe lesions in man. Neuropsychologia, 20, 249–262.

    PubMed  Google Scholar 

  • Pezdek, K. (1983). Memory for items and their spatial locations by young and elderly adults. Developmental Psychology, 19, 895–900.

    Google Scholar 

  • Pohl, W. (1973). Dissociation of spatial discrimination deficits following frontal and parietal lesions in monkeys. Journal of Comparative and Physiological Psychology, 82, 227–239.

    PubMed  Google Scholar 

  • Potegal, M. (1969). The role of the caudate nucleus in spatial orientation of rats. Journal of Comparative and Physiological Psychology, 69, 765–764.

    Google Scholar 

  • Potegal, M. (1971). A note on spatial-motor deficits in patients with Huntington’s disease: A test of a hypothesis. Neuropsychologia, 9, 233–235.

    PubMed  Google Scholar 

  • Potegal, M. (1972). The caudate nucleus egocentric localization system. Acta Neurobiologia Experimentalis, 32, 479–494.

    Google Scholar 

  • Pribram, K.H., Plotkin, H.C., Anderson, R.M., & Leong, D. (1977). Information sources in the delayed alternation task for normal and “frontal” monkeys. Neuropsychologia, 15, 329–340.

    PubMed  Google Scholar 

  • Pribram, K.H., & Tubbs, W.E. (1967). Short-term memory, parsing and the primate frontal cortex, Science, 156, 1765.

    PubMed  Google Scholar 

  • Ranck, J.B. Jr. (1973). Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. Experimental Neurology, 41, 461–555.

    PubMed  Google Scholar 

  • Ratcliff, G. (1979). Spatial thought mental rotation and the right cerebralhemi-sphere. Neuropsychologia, 17, 49–54.

    PubMed  Google Scholar 

  • Ratcliff, G., & Newcombe, F. (1973). Spatial orientation in man: Effects of left, right and bilateral posterior cerebral lesions. Journal of Neurology, Neurosurgery and Psychiatry, 36, 448–454.

    Google Scholar 

  • Rosvold, H.E., & Szwarcbart, M. (1964). Neural structures involved in delayed-response performance. In J.M. Warren & K. Akert (Eds.). The frontal granular cortex and behavior. New York: McGraw Hill.

    Google Scholar 

  • Salamone, J.D., Beart, P.M., Alpert, J.E., & Iversen, S.D. (1984). Impairment in T-maze alternation performance following nucleus basalis magnocellularis lesions in rats. Behavioral Brain Research, 13, 63–70.

    Google Scholar 

  • Samuels, I. (1972). Hippocampal lesions in the rat: Effects on spatial and visual habits. Physiology and Behavior, 8, 1093–1098.

    PubMed  Google Scholar 

  • Samuels, I., Butters, N., & Fedio, P. (1972). Short term memory disorders following temporal lobe removals in humans. Cortex, 8, 283–298.

    PubMed  Google Scholar 

  • Samuels, I., Butters, N., Fedio, P., & Cox, C. (1980). Deficits in short-term auditory memory for verbal material following right temporal lobe removals in humans. International Journal of Neuroscience, 11, 101–108.

    PubMed  Google Scholar 

  • Schulman, S. (1964). Impaired delayed response from thalamic lesions. Archives of Neurology, 11, 477–499.

    PubMed  Google Scholar 

  • Scoville, W.B., & Milner, B. (1957). Loss of recent memory after bilateral hippo-campal lesions. Journal of Neurology, Neurosurgery and Psychiatry, 20, 11–21.

    Google Scholar 

  • Segal, M. (1982). Changes in neurotransmitter actions in aged rat hippocampus. Neurobiology of Aging, 3, 121–124.

    PubMed  Google Scholar 

  • Semmes, J., Weinstein, S., Ghent, L., & Teuber, H.-L. (1963). Impaired orientation in personal and extrapersonal space. Brain, 86, 747–772.

    PubMed  Google Scholar 

  • Smirni, P., Villardita, C., & Zappala, G. (1983). Influence of different paths on spatial memory performance in the block tapping test. Journal of Clinical and Experimental Neuropsychology, 5, 355–360.

    Google Scholar 

  • Smith, M.L., & Milner, B. (1981). The role of the right hippocampus in the recall of spatial location. Neuropsychologia, 19, 781–793.

    PubMed  Google Scholar 

  • Squire, L.R. (1982). Comparison between forms of amnesia: Some deficits are unique to Korsakoff’s syndrome. Journal of Experimental Psychology: Learning, Memory and Cognition, 8, 560–571.

    Google Scholar 

  • Stevens, R. (1981). Scopolamine impairs spatial maze performance. Physiology and Behavior, 27, 385–386.

    PubMed  Google Scholar 

  • Stevens, R., & Cowey, A. (1972). Enhanced alternation learning in hippocampectomized rats by means of added cues. Brain Research, 46, 1–22.

    PubMed  Google Scholar 

  • Stuss, D.T., & Benson, D.F. (1984). Neuropsychological studies of the frontal William W. Beatty and Alexander I. Tröster lobes. Psychological Bulletin, 95, 3–28.

    PubMed  Google Scholar 

  • Sutherland, R.J., Kolb, B., Whishaw, I.Q., & Becker, J.B. (1982). Cortical nor-adrenaline depletion eliminates sparing of spatial learning after neonatal frontal cortex damage in the rat. Neuroscience Letters, 32, 125–130.

    PubMed  Google Scholar 

  • Sutherland, R.J., Whishaw, I.Q., & Kolb, B. (1983). A behavioral analysis of spatial localization following electrolytic, kainate-or colchicine-induced damage to the hippocampal formation in the rat. Behavioural Brain Research, 7, 133–153.

    PubMed  Google Scholar 

  • Sutherland, R.J., Whishaw, I.Q., & Regehr, J. (1982). Cholinergic receptor blockade impairs spatial localization by use of distal cues in the rat. Journal of Comparative and Physiological Psychology, 96, 563–573.

    PubMed  Google Scholar 

  • Thomas, G.J., & Gash, D.M. (1985). Mammillothalamic tracts and representational memory. Behavioral Neuroscience, 99, 621–630.

    PubMed  Google Scholar 

  • Thomas, G.J., & Spafford, P.S. (1984). Deficits for representational memory induced by septal and cortical lesions (singly and combined) in rats. Behavioral Neuroscience, 98, 394–404.

    PubMed  Google Scholar 

  • Victor, M., Adams, R.D., & Collins, C.H. (1971). The Wernicke-Korsakoff Syndrome. Philadelphia: F.A. Davis Co.

    Google Scholar 

  • Waddell, K.J., & Rogoff, B. (1981). Effect of contextual organization on spatial memory of middle-aged and older women. Developmental Psychology, 17, 878–885.

    Google Scholar 

  • Walker, J.A., & Olton, D.S. (1984). Fimbria-fornix lesions impair spatial working memory but not cognitive mapping. Behavioral Neuroscience, 98, 226–242.

    PubMed  Google Scholar 

  • Wallace, J.E., Krauter, E.E., & Campbell, B.A. (1980). Animal models of declining memory in the aged: Short-term and spatial memory in the aged rat. Journal of Gerontology, 35, 355–363.

    PubMed  Google Scholar 

  • Watt, J., Stevens, R., & Robinson, C. (1981). Effects of scopolamine on radial maze performance in rats. Physiology and Behavior, 26,. 845–851.

    Google Scholar 

  • Waxier, M., & Rosvold, H.E. (1970). Delayed alternation in monkeys after removal of the hippocampus. Neuropsychologia, 8, 137–146.

    Google Scholar 

  • Whishaw, I.Q. (1985). Cholinergic receptor blockade in the rat impairs locale but not taxon strategies for place navigation in a swimming pool. Behavioral Neuroscience, 99, 979–1005.

    PubMed  Google Scholar 

  • Whishaw, I.Q., & Kolb, B. (1984). Decortication abolishes place but not cue learning in rats. Behavioral Brain Research, 11, 123–134.

    Google Scholar 

  • Wilkinson, D.A. (1982). Examination of alcoholics by computed tomographic (CT) scans: A critical review. Alcoholism, 6, 31–45.

    PubMed  Google Scholar 

  • Winocur, G. (1985). The hippocampus and thalamus: Their roles in short-and long-term memory and the effect of interference. Behavioural Brain Research, 16, 135–152.

    PubMed  Google Scholar 

  • Wirsching, B.A., Beninger, R.J., Jhamandas, K., Boegman, R.J., & El-Defrawy, S.R. (1984). Differential effects of scopolamine on working and reference memory of rats in the radial maze. Pharmacology, biochemistry and behavior, 20, 659–662.

    Google Scholar 

  • Zola-Morgan, S., & Squire, L.R. (1985a). Medial temporal lesions in monkeys impair memory on a variety of tasks sensitive to human amnesia. Behavioral Neuroscience, 99, 22–34.

    PubMed  Google Scholar 

  • Zola-Morgan, S., & Squire, L.R. (1985b). Amnesia in monkeys after lesions of the mediodorsal nucleus of the thalamus. Annals of Neurology, 17, 558–564.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Beatty, W.W., Tröster, A.I. (1988). Neuropsychology of Spatial Memory. In: Whitaker, H.A. (eds) Contemporary Reviews in Neuropsychology. Springer Series in Neuropsychology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3780-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3780-8_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8347-8

  • Online ISBN: 978-1-4612-3780-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics