Skip to main content

Shell Bending and Instability

  • Chapter
Analysis of Shells and Plates
  • 494 Accesses

Abstract

In earlier chapters, we derived the equilibrium, strain-displacement, and constitutive equations and stated the required boundary conditions for the bending theory of shells, referred to a system of orthogonal curvilinear coordinates. Also, we developed strain energy and potential energy expressions that can be incorporated into an energy formulation of the shell theory. In this chapter, these equations are specialized for various classes of shells, as we have done for the membrane theory equations in chapter 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Hetényi, Beams on Elastic Foundations ( Ann Arbor: University of Michigan Press, 1946 ).

    Google Scholar 

  2. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (New York: McGraw-Hill, 1959), pp. 472–481; E. Y. W. Tsui, Stresses in Shells of Revolution ( Menlo Park, CA: Pacific Coast Publishers, 1968 ), p. 63.

    Google Scholar 

  3. C. R. Calladine, “Theory of Shell Structures,” (Cambridge: Cambridge University Press, 1983); Gaussian Curvature and Shell Structures, The Mathematics of Shell Structures [J. A. Gregory, Ed.] ( Oxford: Clarendon Press, 1986 ) pp. 179 - 196.

    Book  MATH  Google Scholar 

  4. H. Kraus, Thin Elastic Shells ( New York: Wiley, 1967 ), pp. 136 - 139.

    MATH  Google Scholar 

  5. “Design of Cylindrical Concrete Roofs,” ASCE Manual of Engineering Practice no. 31 ( New York: American Society of Civil Engineers, 1952 ).

    Google Scholar 

  6. W. Flügge, Stresses in Shells, 2nd ed. (Berlin: Springer-Verlag, 1973), chap. 5 and pp. 513–515.

    Google Scholar 

  7. V. V. Novozhilov, Thin Shell Theory [translated from 2nd Russian ed. by P. G. Lowe (Groningen, The Netherlands: Noordhoff, 1964), pp. 215–218].

    Google Scholar 

  8. V. Z. Vlasov, General Theory of Shells and Its Application in Engineering, NASA TTF-99 ( Washington, D.C.: National Aeronautics and Space Administration, April 1964 ).

    Google Scholar 

  9. D. P. Billington, Thin Shell Concrete Structures, 2nd ed. ( New York: McGraw-Hill, 1982 ) pp. 10–21.

    Google Scholar 

  10. Kraus, Thin Elastic Shells, pp. 221–229.

    Google Scholar 

  11. Ibid., pp. 200–204.

    Google Scholar 

  12. Ibid., pp. 297–314.

    Google Scholar 

  13. Flügge, Stresses in Shells, pp. 217–250.

    Google Scholar 

  14. Design of Cylindrical Concrete Roofs.

    Google Scholar 

  15. Vlasov, General Theory of Shells, pp. 359–394.

    Google Scholar 

  16. Ibid., pp. 376-394.

    Google Scholar 

  17. P. L. Gould et al., “Column Supported Cylindrical-Conical Tanks,” Journal of the Structural Division, ASCE 102, no. ST2 (February 1976): 429–447.

    Google Scholar 

  18. Flügge, Stresses in Shells, pp. 231–235.

    Google Scholar 

  19. Gould et al., “Column Supported Cylindrical-Conical Tanks,” pp. 429–447.

    Google Scholar 

  20. D. P. Billington, Thin Shell Concrete Structures ( New York: McGraw-Hill, 1965 ), pp. 171–172.

    Google Scholar 

  21. Design of Cylindrical Concrete Roofs.

    Google Scholar 

  22. Billington, Thin Shell Concrete Design, chap. 6.

    Google Scholar 

  23. Design of Cylindrical Concrete Roofs.

    Google Scholar 

  24. Ibid.

    Google Scholar 

  25. Ibid., pp. 48–57.

    Google Scholar 

  26. Ibid., pp. 48–57.

    Google Scholar 

  27. Novozhilov, Thin Shell Theory, chap. IV.

    Google Scholar 

  28. Flügge, Stresses in Shells, chap. 6.

    Google Scholar 

  29. Kraus, Thin Elastic Shells, chaps. 5, 6, and 7.

    Google Scholar 

  30. H. Reissner, Spannungen in Kugelschalen ( Leipzig: Muller-Breslau-Fetschrift, 1912 ), pp. 181 - 193.

    Google Scholar 

  31. E. Meissner, “Das Elastizitatsproblem für dünne Schalen von Ringflächen-, Kugel-, and Kegelform,” Physik Zeit. 14 (1913): 343–349.

    Google Scholar 

  32. Flügge, Stresses in Shells, pp. 326–344.

    Google Scholar 

  33. Ibid.

    Google Scholar 

  34. Novozhilov, Thin Shell Theory, chaps. III–IV.

    Google Scholar 

  35. Flügge, Stresses in Shells, chap. 6.

    Google Scholar 

  36. Kraus, Thin Elastic Shells, chaps. 5, 6, and 7.

    Google Scholar 

  37. Flügge, Stresses in Shells, pp. 326–334.

    Google Scholar 

  38. Kraus, Thin Elastic Shells, pp. 271–283.

    Google Scholar 

  39. Novozhilov, Thin Shell Theory, pp. 315–319.

    Google Scholar 

  40. Kraus, Thin Elastic Shells, pp. 261–271.

    Google Scholar 

  41. Flügge, Stresses in Shells, pp. 341–351.

    Google Scholar 

  42. H. Harintho, private communication.

    Google Scholar 

  43. J. N. Pirok and R. S. Wozniak, “Steel Tanks,:” in Structural Engineering Handbook, E. H. Gaylord, Jr., and C. N. Gaylord, eds. (New York: McGraw-Hill, 1968), chap. 23.

    Google Scholar 

  44. Gould et al., “Column Supported Cylindrical-Conical Tanks.”

    Google Scholar 

  45. R. S. C. Wang and P. L. Gould, “Continuously Supported Cylindrical-Conical Tanks,” Journal of the Structural Division, ASCE 100, no. ST10 (October 1974): 2037–2052.

    Google Scholar 

  46. G. V. Ranjan and C. R. Steele, “Analysis of Torospherical Pressure Vessels,” Journal of the Engineering Mechanics Division, ASCE 102, no. EM4 (August 1976): 643–657.

    Google Scholar 

  47. P. L. Gould, J. S. Lin and J. M. Rotter, “Linear Stress Analysis of Torospherical Head,” Journal of Engineering Mechanics, ASCE III, no. 10 (October 1985): 1296–1300.

    Google Scholar 

  48. Flügge, Stresses in Shells, pp. 386–413.

    Google Scholar 

  49. Novozhilov, Thin Shell Theory, chap. 4.

    Google Scholar 

  50. P. L. Gould and S. L. Lee, “Hyperboloids of Revolution Supported on Columns,” Journal of the Engineering Mechanics Division, ASCE 95, no. EM5 (October 1969): 1083–1100; P. L. Gould and S. L. Lee, “Column-Supported Hyperboloids under Wind Load” (Zurich, Switzerland: Publications, International Association for Bridge and Structural Engineering, 1971 ), vol. 31–11, pp. 47 - 64.

    Google Scholar 

  51. L. J. Brombolich and P. L. Gould, “Finite Element Analysis of Shells of Revolution by Minimization of the Potential Energy Functional,” Proceedings of the Symposium on Applications of Finite Element Methods in Civil Engineering ( Nashville, Tenn.: Vanderbilt University, 1969, pp. 279–307.

    Google Scholar 

  52. Ibid, and L. J. Brombolich and P. L. Gould, “A High-Precision Curved Shell Finite Element,” Synoptic, AIAA Journal 10, no. 6 (June 1972): 727–728.

    Article  Google Scholar 

  53. P. L. Gould, Finite Element Analysis of Shells of Revolution, ( London: Pitman, 1985 ).

    Google Scholar 

  54. W. C. Schnobrich, “Analysis of Hyperbolic Paraboloid Shells,” Concrete Thin Shells, publication SP-28 (Detroit: American Concrete Institute, 1971 ), pp. 275–311; “Different Methods of Numerical Analysis of Structures,” Proc. of Symposium on Practical Aspects in the Computation of Shell and Spatial Structures, (K. U. Leuven, Belgium, July 1986 ).

    Google Scholar 

  55. Novozhilov, Thin Shell Theory, pp. 88–94.

    Google Scholar 

  56. Ibid.

    Google Scholar 

  57. Vlasov, General Theory of Shells, p. 345–346.

    Google Scholar 

  58. Novozhilov, Thin Shell Theory, p. 92.

    Google Scholar 

  59. Ibid.

    Google Scholar 

  60. Vlasov, General Theory of Shells, pp. 495–514.

    Google Scholar 

  61. Ibid.

    Google Scholar 

  62. Ibid.

    Google Scholar 

  63. Novozhilov, Thin Shell Theory, pp. 94–99.

    Google Scholar 

  64. Ibid.

    Google Scholar 

  65. Ibid.

    Google Scholar 

  66. B. O. Almroth and J. H. Starnes, “The Computer in Shell Stability Analysis,” Journal of the Engineering Mechanics Division, ASCE 101, no. EM6 (December 1975): 873–888.

    Google Scholar 

  67. D. Bushneil, “Static Collapse: A Survey of Methods and Modes of Modes of Behavior,” Finite Elements in Analysis and Design 1, (1985), pp. 165–205

    Google Scholar 

  68. Vlasov, General Theory of Shells, pp. 521–525.

    Google Scholar 

  69. Ibid.

    Google Scholar 

  70. S. Timoshenko and J. Gere, Theory of Elastic Stability ( New York: McGraw-Hill, 1961 ), pp. 457–519.

    Google Scholar 

  71. Vlasov, General Theory of Shells, pp. 525–529.

    Google Scholar 

  72. D. O. Brush and B. O. Almroth, Buckling of Bars, Plates, and Shells ( New York: McGraw-Hill, 1975 ), pp. 142–258.

    MATH  Google Scholar 

  73. Vlasov, General Theory of Shells, pp. 525–529.

    Google Scholar 

  74. Timoshenko and Gere, Theory of Elastic Stability, pp. 468–473.

    Google Scholar 

  75. Vlasov, General Theory of Shells, pp. 529–538.

    Google Scholar 

  76. Flügge, Stresses in Shells, chap. 7.

    Google Scholar 

  77. Brush and Almroth, Buckling of Bars, Plates, and Shells.

    Google Scholar 

  78. Vlasov, General Theory of Shells, pp. 538–543.

    Google Scholar 

  79. Ibid.

    Google Scholar 

  80. T. von Kärmän and H. S. Tsien, “The Buckling of Thin Cylindrical Shells under Elastic Compression,” Journal of Aeronautical Sciences 8 (1941): 303.

    Google Scholar 

  81. Timoshenko and Gere, Theory of Elastic Stability, pp. 471–472.

    Google Scholar 

  82. T. H. Yang and S. A. Guralnick, “Buckling of Axially Loaded Open Shells,” Journal of the Engineering Mechanics Division, ASCE 102, no. EM2 (April 1976): 199–211.

    Google Scholar 

  83. H. Kolisnik and C. Tahiani, “A Survey of Methods of Analysis of Stiffened Shell Structures,” Civil Engineering Research Report No. 85-3, Royal Military College of Canada (August 1985).

    Google Scholar 

  84. W. T. Koiter, “Over de Stabiliteit van het elastisch evenwicht,” Dissertation Delft, 1945, English Translation NASA TT F-10, 833 (1967).

    Google Scholar 

  85. U. Wittek, “Beitrag zum Trag verhalten der Strukturen bei endlichen Verformungen unter besonderer Beachtung des Nachbeulmechanismus dünner Flächentragwerke,” Mitteilung Nr. 80-1, Technical Reports, Institut für Konstruktiven Ingenierbau, Ruhr-Universität Bochum (May 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Gould, P.L. (1988). Shell Bending and Instability. In: Analysis of Shells and Plates. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3764-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3764-8_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8340-9

  • Online ISBN: 978-1-4612-3764-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics