Skip to main content
  • 525 Accesses

Abstract

We examine the individual terms of the force equilibrium equations, (3.17a-c), and the moment equilibrium equations, (3.22a-c). We see that the equations are coupled only through the transverse shear stress resultants, Q α and Q β If we suppose that for a certain class of shells, the stress couples are an order of magnitude smaller than the extensional and in-place shear stress resultants, we may deduce from equations (3.22a-c) that the transverse shear stress resultants are similarly small and thus may be neglected in the force equilibrium equations, (3.17). This implies that the shell may achieve force equilibrium through the action of in-plane forces alone. From a physical viewpoint, this possibility is evident for the first two equilibrium equations which reflect in-plane resistance to in-plane loading, a natural and obvious mechanism. On the other hand, the third equilibrium equation refers to the normal direction, and the possibility of resisting transverse loading with in-plane forces alone is not as apparent. It is evident from equation (3.17c) that this mode of resistance is possible only if at least one radius of curvature is finite; i.e., R α and/or R β ≠∞. Thus, flat plates are excluded from resisting transverse loading in this manner, within the limitations of small deformation theory (assumption [2], table 1-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Flügge, Stresses in Shells, 2nd ed. ( Berlin: Springer-Verlag, 1973 ), pp. 100 - 102.

    MATH  Google Scholar 

  2. V. V. Novozhilov, Thin Shell Theory [translated from 2nd Russian ed. by P. G. Lowe (Groningen, The Netherlands: Noordhoff, 1964), pp. 105-107].

    Google Scholar 

  3. P. L. Gould, A. Cataloglu, G. Dhatt, A Chattopadhyay, and R. E. Clark, “Stress Analysis of the Human Heart Valve,” Journal of Computers and Structures, 3, 1973, pp. 377 - 384.

    Article  Google Scholar 

  4. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd ed. ( New York: McGraw-Hill, 1959 ), pp. 449 - 450.

    Google Scholar 

  5. Novozhilov, Thin Shell Theory, pp. 117-119.

    Google Scholar 

  6. D. P. Billington, Thin Shell Concrete Structures (New York: McGraw-Hill, 2nd ed. 1982 ), p. 114.

    Google Scholar 

  7. E. H. Baker, L. Kovalevsky, and F. L. Rish, Structural Analysis of Shells ( New York: McGraw-Hill, 1972 ), p. 256.

    MATH  Google Scholar 

  8. P. L. Gould and S. L. Lee, “Hyperbolic Cooling Towers under Seismic Design Load,” Journal of the Structural Division, ASCE 93, no. ST3, (June 1967): 87-109. Closure, Journal of the Structural Division, ASCE 94, no. ST10 (October 1968): 2487-2493; S. L. Lee and P. L. Gould, “Hyperbolic Cooling Towers under Wind Load,” Journal of the Structural Division, ASCE 93, no. ST5 (October 1967): 487 - 514.

    Google Scholar 

  9. Flügge, Stresses in Shells, pp. 171-179.

    Google Scholar 

  10. Novozhilov, Thin Shell Theory, pp. 130-138.

    Google Scholar 

  11. Ibid.

    Google Scholar 

  12. A. Fino and R. W. Schneider, “Wrinkling of a Large Thin Code Head under Internal Pressure,” Welding Research Council Bulletin no. 69 ( New York: Welding Research Council, June 1961 ), pp. 11 - 13.

    Google Scholar 

  13. Novozhilov, Thin Shell Theory, pp. 117-119.

    Google Scholar 

  14. Ibid., pp. 147-151.

    Google Scholar 

  15. H. Kraus, Thin Elastic Shells ( New York: Wiley, 1967 ), pp. 307 - 314.

    MATH  Google Scholar 

  16. Novozhilov, Thin Shell Theory, pp. 151-163.

    Google Scholar 

  17. V. Z. Vlasov, General Theory of Shells and Its Application in Engineering, NASA Technical Translation TTF-99 ( Washington, D.C.: National Aeronautics and Space Administration, 1964 ), pp. 200 - 201.

    Google Scholar 

  18. H. K. CHИTKO, CTPOИTEJIЬHAЯ MEXAHИKA (Construction Mechanics) (MOCKBA: „BЬLCШAЯ IIIKOJIA,,, 1980 ).

    Google Scholar 

  19. Timoshenko and Woinowsky-Krieger, Theory of Plates and Shells, pp. 449-451.

    Google Scholar 

  20. E. P. Popov, “Earthquake Stresses in Spherical Domes and in Cones,” Journal of the Structure Division, ASCE 82, no. ST3 (May 1956): 974-1-974-14.

    Google Scholar 

  21. R. W. Clough, “Earthquake Response of Structures,” in R. L. Wiegel, ed., Earthquake Engineering (Englewood Cliffs, N.J.: Prentice-Hall, 1970 ), pp. 307 - 334.

    Google Scholar 

  22. P. L. Gould, S. K. Sen, and H. Suryoutomo, “Dynamic Analysis of Column- Supported Hyperboloidal Shells,” Earthquake Engineering and Structural Dynamics 2 (1974): 269 - 280.

    Article  Google Scholar 

  23. Ibid.

    Google Scholar 

  24. P. L. Gould, “Hyperbolic Cooling Towers under Seismic Design Loading,” Proc. of the Fourth Symposium, on Earthquake Engineering I., University of Roorkee, Roorkee, India, November 1970.

    Google Scholar 

  25. P. L. Gould, “Quasistatic Seismic Loading Distributions for Hyperbolic Cooling Towers,” Bulletin of the Indian Society of Earthquake Technology 8, no. 4 (December 1971): 163 - 168.

    Google Scholar 

  26. Gould and Lee, Closure to “Hyperbolic Cooling Towers under Seismic Design Load.”

    Google Scholar 

  27. Building Code Requirements for Reinforced Concrete Structures (ACI 318-71) (Detroit: American Concrete Institute, 1971), pp. 26-27.

    Google Scholar 

  28. Timoshenko and Woinowsky-Krieger, Theory of Plates and Shells, pp. 453- 456.

    Google Scholar 

  29. P. L. Gould and S. L. Lee, “Column-Supported Hyperboloids under Wind Load,” Publications of the International Association for Bridge and Structural Engineering, Zurich, Switzerland 31-11, 1971, pp$147-64; S. K. Sen and P. L. Gould, “Hyperboloidal Shells on Discrete Supports,” technical note, Journal of the Structural Division, ASCE 99, no. ST3 (March 1973): 595 - 603.

    Google Scholar 

  30. J. M. Rotter, “Membrane Theory of Shells for Bins and Silos,” Dept. of Civil and Mining Engineering, Univ. of Sydney, NSW, Australia.

    Google Scholar 

  31. M. E. Killion, “Design Pressures in Circular Bins,” Journal of the Structural Division, ASCE 111, no. 8 (August 1985): 1760 - 1774.

    Article  Google Scholar 

  32. R. F. Rish and T. F. Steel, “Design and Selection of Hyperbolic Cooling Towers,” Journal of the Power Division, ASCE 85, no. P05, (October 1959): 89 - 117.

    Google Scholar 

  33. Reinforced Concrete Cooling Tower Shells—Practice and Commentary (ACI 334.2R-84) (Detroit: American Concrete Institute, 1984): pp. 6-7.

    Google Scholar 

  34. D. Brissoulis and D. A. Pecknold, “Behavior of Empty Steel Grain Silos under Wind Loading: Part 1: The Stiffened Cylindrical Shell,” Engineering Structures (October 1986): 260 - 274.

    Google Scholar 

  35. P. L. Gould, “The Cylindrical Shell Slice Beam,” Journal of Engineering Mechanics, ASCE 114, no. 7 (July, 1988 ).

    Google Scholar 

  36. A. J. Bellworthy and J. G. A. Croll, “Dielectric Space Frame Domes,” Space Structures, 1, no. 1, (1985): 41 - 50.

    Google Scholar 

  37. Lee and Gould, “Hyperbolic Cooling Towers under Wind Load.”

    Google Scholar 

  38. Novozhilov, Thin Shell Theory, pp. 315-319.

    Google Scholar 

  39. G. W. Hill, Collected Mathematical Works, vol. 1 (Washington, D.C.: Carnegie Institute of Washington, 1905-1907), pp. 243-270; E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed. ( Cambridge: Cambridge University Press, 1935 ), pp. 412 - 417.

    Google Scholar 

  40. P. L. Gould, “Unsymmetrically Loaded Hyperboloids of Revolution,” Journal of the Engineering Mechanics Division, ASCE 94, no. EM5 (October 1968): 1029 - 1043.

    Google Scholar 

  41. E. Ingerslev, “Design of Cooling Tower Shells,” Proceedings of the June 1966 Bratislava, Czechoslovakia, Symposium on Tower Shaped Steel and Reinforced Concrete structures, IASS. Madrid, Spain, 1968.

    Google Scholar 

  42. P. L. Gould, “Finite Element Analysis of Shells of Revolution” ( London: Pitman, 1985 ).

    Google Scholar 

  43. Baker, Kovalevsky, and Rish, Structural Analysis of Shells.

    Google Scholar 

  44. “Design of Cylindrical Concrete Roofs,” ASCE Manual of Engineering Practice no. 31 (New York: American Society of Civil Engineers, 1952); Billington, Thin Shell Concrete Structures, chaps. 5 and 6.

    Google Scholar 

  45. Billington, Thin Shell Concrete Structures, pp. 186-191.

    Google Scholar 

  46. Billington, Thin Shell Concrete Structures, pp. 210-211.

    Google Scholar 

  47. Billington, Thin Shell Concrete Structures, pp. 258-262.

    Google Scholar 

  48. A. L. Parme, “Shells of Double Curvature,” Trans. ASCE, vol. 123, 1958, pp. 990 - 1025.

    Google Scholar 

  49. Billington, Thin Shell Concrete Structures, pp. 261-262.

    Google Scholar 

  50. Billington, Thin Shell Concrete Structures, pp. 272-274.

    Google Scholar 

  51. Ibid.

    Google Scholar 

  52. C. Faber, Candela: The Shell Builder ( New York: Reinhold, 1963 ).

    Google Scholar 

  53. “The New Newark Airport,” Civil Engineering 44, no. 9 (September 1974): 74-76.

    Google Scholar 

  54. D. P. Billington, “Thin Shell Concrete Structures” (New York: McGraw Hill, 1965): pp. 250-254; 2nd Ed., 1982, pp. 277 - 283.

    Google Scholar 

  55. A. Shaaban and M. Ketchum, “Design of Hipped Hypar Shells,” Journal of the Structural Division, ASCE, 102, no. ST11, (November 1976): pp. 2151 - 2161.

    Google Scholar 

  56. W. C. Schnobrich, “Analysis of Hyperbolic Paraboloid Shells,” Symposium on Concrete Thin Shells, ACI Special Publication SP-28, paper SP-28-13 ( Detroit: American Concrete Institute, 1971 ), pp. 275 - 311.

    Google Scholar 

  57. W. C. Schnobrich, “Analysis of Hipped Roof Hyperbolic Paraboloid Structures,” Journal of the Structural Division, ASCE 98, no. ST7 (July 1972): 1575-1583; discussion by M.S. Ketchum, vol. 99, no. ST4 (April 1973): 796-797; closure, vol. 100, no. ST2 (February 1974): 467-469; A. Shaaban and M. S. Ketchum “Design of Hipped Hypar Shells,” Journal of the Structural Division, ASCE 102, no. ST 11 (November 1976): 2151 - 2161.

    Google Scholar 

  58. S. H. Simmonds, “Continuous Hypar Roofs for Water Treatment Plant,” ACI Fall Convention, Baltimore, November 1986.

    Google Scholar 

  59. S. S. Tezcan, K. M. Agrawal, and G. Kostro, “Finite Element Analysis of Hyperbolic Paraboloid Shells,” Journal of the Structural Division, ASCE 97, no. ST1 (January 1971): 407-424; P. V. Banavalkar and P. Gergely, “Thin-Steel Hyperbolic Paraboloid Shells,” Journal of the Structural Division, ASCE 98, no. ST 11 (November 1973): 2605 - 2621.

    Google Scholar 

  60. R. C. Liu and N. C. Teter, “Hyperbolic Paraboloid Shells Built with Wood Products,” Bulletin of IASS 30 (June 1967): 3 - 8.

    Google Scholar 

  61. J. Bobrowski, “Calgary’s Olympic Saddledome,” Space Structures, V. 1, no. 1, 1985, pp. 13-26; and “The Saddledome’: The Olympic Ice Stadium in Calgary,” Proc. Canadian Society for Civil Engineering Annual Conference, Saskatoon, SK, May 27 - 31 1985.

    Google Scholar 

  62. Billington, Thin Shell Concrete Structures (1982), pp. 29-32, 265-272.

    Google Scholar 

  63. Billington, Thin Shell Concrete Structures, pp. 283-290.

    Google Scholar 

  64. A. M. Haas, Thin Concrete Shells, vol. 2 ( New York: Wiley, 1967 ), p. 103 - 133.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Gould, P.L. (1988). Membrane Theory. In: Analysis of Shells and Plates. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3764-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3764-8_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8340-9

  • Online ISBN: 978-1-4612-3764-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics