Skip to main content

The Efferent System

  • Conference paper
The Mechanosensory Lateral Line

Abstract

Our understanding of lateral line operation cannot be complete until the significance of the efferent innervation is understood. This innervation is a fundamental component of hair cell function: it is found not only in canal and superficial neuromasts of the lateral line but also in the inner ear. This efferent system, in common with the efferent innervation to the retina and muscle spindle, provides the opportunity for a dynamic control of sense organ properties, but how this is used and organized, in the case of octavolateralis efferent neurons, is unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Reference

  • Adams JC, Mroz EA, Sewell WF (1987) A possible neurotransmitter role for CGRP in a hair-cell sensory organ. Brain Res 419: 347–351.

    Article  PubMed  CAS  Google Scholar 

  • Amemiya F, Kishida R, Goris RC, Onishi H, Kusunoki T (1985) Primary vestibular projections in the hagfish, Eptatretus burgeri. Brain Res 337: 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Art JJ, Fettiplace R (1984) Efferent desensitization of auditory nerve fiber responses in the cochlea of the turtle, Pseudemys scripta elegans. J Physiol 356: 507–523.

    PubMed  CAS  Google Scholar 

  • Art JJ, Kroese ABA (1982) Effects of efferent activity during respiration on Xenopus laevis lateral-line afferent responses. J Physiol 332: 21–22.

    Google Scholar 

  • Art JJ, Crawford AC, Fettiplace R, Fuchs PA (1982) Efferent regulation of hair cells in the turtle cochlea. Proc R Soc Lond B 216: 377–384.

    Article  PubMed  CAS  Google Scholar 

  • Aschoff A, Ostwald J (1987) Different origins of cochlear efferents in some bat species, rats, and guinea pigs. J Comp Neurol 264: 56–72.

    Article  PubMed  CAS  Google Scholar 

  • Ashmore JF (1984) The stiffness of the sensory hair bundle of frog saccular hair cells. J Physiol 350: 20P.

    Google Scholar 

  • Ashmore JF (1987) A fast motile response in guinea-pig outer hair cells: The cellular basis of the cochlear amplifier. J Physiol 388: 323–349.

    PubMed  CAS  Google Scholar 

  • Ashmore JF, Russell IJ (1982) Effect of efferent nerve stimulation on hair cells of the frog sacculus. J Physiol (Lond) 329: 25–26P.

    Google Scholar 

  • Bell CC (1981) Central distribution of octavolateral afferents and efferents in a teleost (Mormyridae). J Comp Neurol 195: 391–414.

    Article  PubMed  CAS  Google Scholar 

  • Brownell WE, Bader CR, Bertrand D, De Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227: 194–196.

    Article  PubMed  CAS  Google Scholar 

  • Claas B, Münz H (1980) Bony fish lateral line efferent neurons identified by retrograde axonal transport of horseradish peroxidase (HRP). Brain Res 193: 249–253.

    Article  PubMed  CAS  Google Scholar 

  • Claas B, Fritzsch B, Münz H (1981) Common efferents to lateral line and labyrinthine systems in aquatic vertebrates. Neurosci Lett 27: 231–235.

    Article  PubMed  CAS  Google Scholar 

  • Dieringer N, Blanks RHI, Precht W (1977) Cat efferent vestibular system: Weak suppression of primary afferent activity. Neurosci Lett 5: 285–290.

    Article  PubMed  CAS  Google Scholar 

  • Flock Å, Lam DMK (1974) Neurotransmitter synthesis in inner ear and lateral line sense organs. Nature 249: 142–144.

    Article  PubMed  CAS  Google Scholar 

  • Flock Å, Russell IJ (1973) The postsynaptic action of efferent fibres in the lateral line organ of the burbot Lota lota. J Physiol 235: 591–605.

    PubMed  CAS  Google Scholar 

  • Flock Å, Russell IJ (1976) Inhibition by efferent nerve fibres: Action on hair cells and afferent synaptic transmission in the lateral line canal organ of the burbot, Lota lota. J Physiol 257: 45–62.

    PubMed  CAS  Google Scholar 

  • Fritzsch B, Crapon de Caprona D (1984) The origin of centrifugal inner ear fibers of gymnophions (Amphibia): A horseradish peroxidase study. Neurosci Lett 46: 131–136.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B, Wahnschaffe V (1987) Electron microscopical evidence for common inner ear and lateral line efferents in urodeles. Neurosci Lett 81: 48–52.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B, Crapon de Caprona M-D, Wächtler K, Körtje K-H (1984) Neuroanatomical evidence for electroreception in lampreys. Z Naturforsch 39C: 856–858.

    Google Scholar 

  • Furukawa T (1981) Effects of efferent stimulation on the saccule of goldfish. J Physiol 315: 203–215.

    PubMed  CAS  Google Scholar 

  • Galambos R (1956) Suppression of auditory nerve activity by stimulation of efferent fibres to cochlea. J Neurophysiol 19: 424–437.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Fernández C (1980) Efferent vestibular system in the squirrel monkey: Anatomical location and influence on afferent activity. J Neurophysiol 43: 986–1025.

    PubMed  CAS  Google Scholar 

  • Görner P (1967) Independence of afferent activity from efferent activity in the lateral line organ of Xenopus laevis (Daudin). In: Cohen PH (ed) Lateral Line Detectors. Bloomington: Indiana University Press, pp. 199–214.

    Google Scholar 

  • Hackett JT, Faber DS (1983) Mauthner axon networks mediating supraspinal components of the startle response in the goldfish. Neuroscience 8: 317–331.

    Article  PubMed  CAS  Google Scholar 

  • Hama K (1965) Some observations on the fine structure of the lateral line organ of the Japanese sea eel Rhynozymba nystromi. J Cell Biol 24: 193–210.

    Article  PubMed  CAS  Google Scholar 

  • Hama K (1969) A study of the fine structure of the saccular macula of the goldfish. Z Zell-forsch 94: 155–171.

    Article  CAS  Google Scholar 

  • Hama K (1978) A study of the fine structure of the pit organ of the common Japanese sea eel Conger myriaster. Cell Tissue Res 189: 375–388.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann R, Klinke R (1980) Efferent activity in the goldfish vestibular nerve and its influence on afferent activity. Pflügers Arch 388: 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Katsuki Y, Yanagisawa K (1970) Efferent system of lateral-line organ of fish. Comp Biochem Physiol 33: 405–421.

    Article  PubMed  CAS  Google Scholar 

  • Highstein SM, Baker R (1985) Action of the efferent vestibular system on primary afferents in the toadfish, Opsanus tau. J Neurophysiol 54: 370–384.

    PubMed  CAS  Google Scholar 

  • Highstein SM, Baker R (1986) Organization of the efferent vestibular nuclei and nerves of the toadfish, Opsanus tau. J Comp Neurol 243: 309–325.

    Article  PubMed  CAS  Google Scholar 

  • Jacoby J, Rubinson K (1984) Efferent projections of the torus semicircularis to the medulla of the tadpole, Rana catesbeiana. Brain Res 292: 378–381.

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CB, Metcalfe WK, Schabtach ET (1986) Reticular interneurons: A class of serially repeating cells in the zebrafish hindbrain. J Comp Neurol 233: 365–376.

    Article  Google Scholar 

  • Kishida R, Goris RC, Nishizawa H, Koyama H, Kadota T, Amemiya F (1987) Primary neurons of the lateral line nerves and their central projections in hagfishes. J Comp Neurol 264: 303–310.

    Article  PubMed  CAS  Google Scholar 

  • Klinke R, Schmidt CL (1970) Efferent influence on the vestibular organ during active movements of the body. Pflügers Arch 318: 325–332.

    Article  PubMed  CAS  Google Scholar 

  • Koester DM (1983) Central projections of the octavolateralis nerves of the clearnose skate Raja eglanteria. J Comp Neurol 221: 199–215.

    Article  PubMed  CAS  Google Scholar 

  • Meredith GE (1989) Comparative view of the central organization of afferent and efferent circuitry for the inner ear. Acta Biologica Hung (in press).

    Google Scholar 

  • Meredith GE, Roberts BL (1986) Central organization of the efferent supply to the labyrinthine and lateral line receptors of the dogfish. Neuroscience 17: 225–233.

    Article  PubMed  CAS  Google Scholar 

  • Meredith GE, Roberts BL (1987) Distribution and morphological characteristics of efferent neurons innervating end organs in the ear and lateral line of the European eel. J Comp Neurol 265: 494–506.

    Article  PubMed  CAS  Google Scholar 

  • Meredith GE, Roberts BL, Suharti Maslam (1987) Distribution of afferent fibers in the brainstem from end organs in the ear and lateral line in the European eel. J Comp Neurol 265: 507–520.

    Article  PubMed  CAS  Google Scholar 

  • Metcalfe WK, Kimmel CB, Schabtach E (1985) Anatomy of the posterior lateral line system in young larvae of the zebrafish. J Comp Neurol 233: 377–389.

    Article  PubMed  CAS  Google Scholar 

  • Mulroy MJ, Oblak TG (1985) Cochlear nerve of the alligator lizard. J Comp Neurol 233: 463–472.

    Article  PubMed  CAS  Google Scholar 

  • Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol A 157: 555–568.

    Article  Google Scholar 

  • Münz H, Claas B (1986) Activity of efferent neurons in the lateral line system. Neurosci Lett (Suppl) 26: S375.

    Google Scholar 

  • Nakajima Y, Wang DW (1974) Morphology of afferent and efferent synapses in hearing organ of the goldfish. J Comp Neurol 156: 403–416.

    Article  PubMed  CAS  Google Scholar 

  • Paul D, Roberts BL (1977) The location and properties of the efferent neurons of the head lateral-line organs of dogfish. J Comp Physiol 116: 177–127.

    Article  Google Scholar 

  • Pelligrini M, Ceccotti F, Magherini P (1985) The efferent vestibular neurons in the toad (Bufo bufo L.): Their location and morphology. A horseradish peroxidase study. Brain Res 344: 1–8.

    Article  Google Scholar 

  • Roberts BL (1972) Activity of lateral-line organs in swimming dogfish. J Exp Biol 56: 105–118.

    Google Scholar 

  • Roberts BL (1978) Mechanoreceptors and the behaviour of elasmobranch fishes with special reference to the acoustico-lateralis system. In: Hodgson ES, Matthewson RF (eds) Sensory Biology of Sharks, Skates and Rays. Washington: U.S. Government Printing Office, pp. 331–390.

    Google Scholar 

  • Roberts BL, Russell IJ (1972) The activity of lateral-line efferent neurones in stationary and swimming dogfish. J Exp Biol 57: 435–448.

    PubMed  CAS  Google Scholar 

  • Roberts BL, Williamson RM (1983) Motor pattern formation in the dogfish spinal cord. In: Roberts A, Roberts B (eds) Neural Origin of Rhythmic Movements. London: Cambridge University Press, pp. 331–350.

    Google Scholar 

  • Robertson D, Gummer M (1985) Physiological and morphological characterization of efferent neurones in the guinea pig cochlea. Hear Res 20: 63–77.

    Article  PubMed  CAS  Google Scholar 

  • Rossi ML, Prigioni I, Valli P, Casella C (1980) Activation of the efferent system in the isolated frog labyrinth: Effects on the afferent epsps and spike discharge recorded from single fibres of the posterior nerve. Brain Res 185: 125–137.

    Article  PubMed  CAS  Google Scholar 

  • Russell IJ (1971a) The role of the lateral-line efferent system in Xenopus laevis. J Exp Biol 54: 621–641.

    PubMed  CAS  Google Scholar 

  • Russell IJ (1971b) The pharmacology of efferent synapses in the lateral line system of Xenopus laevis. J Exp Biol 54: 643–658.

    PubMed  CAS  Google Scholar 

  • Russell IJ (1974) Central and peripheral inhibition of lateral line input during the startle response in goldfish. Brain Res 80: 517–522.

    Article  PubMed  CAS  Google Scholar 

  • Russell IJ (1976) Central inhibition of lateral line input in the medulla of the goldfish by neurones which control active body movements. J Comp Physiol (A) 111: 335–358.

    Article  Google Scholar 

  • Russell IJ, Lowe DA (1983) The effect of efferent stimulation on the phase and amplitude of extracellular receptor potentials in the lateral line system of the perch (Perca fluviatilis). J Exp Biol 102: 223–238.

    Google Scholar 

  • Russell IJ, Roberts BL (1972) Inhibition of spontaneous lateral-line activity by efferent nerve stimulation. J Exp Biol 57: 77–82.

    Google Scholar 

  • Russell IJ, Roberts BL (1974) Active reduction of lateral-line sensitivity in swimming dogfish. J Comp Physiol 94: 7–15.

    Article  Google Scholar 

  • Sans A, Highstein SM (1984) New ultrastructural features in the vestibular labyrinth of the toadfish, Opsanus tau. Brain Res 308: 191–195.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RS (1963) Frog labyrinthine efferent impulses. Acta Otolaryngol 56: 51–64.

    Article  PubMed  CAS  Google Scholar 

  • Späth M, Schweickert W (1975) Lateral-line efferents to mechanical and visual stimuli. Naturwissenschaften 62: S579-S580.

    Article  Google Scholar 

  • Warr BW (1975) Olivocochlear and vestibular efferent neurons of the feline brainstem: Their location, morphology and number determined by retrograde axonal transport and acetylcholinesterase histochemistry. J Comp Neurol 161: 159–182.

    Article  PubMed  CAS  Google Scholar 

  • Wegner N (1982) A qualitative and quantitative study of a sensory epithelium in the inner ear of a fish (Colisa labiosa; Anabantidae), Act Zool (Stockh) 63: 133–146.

    Article  Google Scholar 

  • Will U (1982) Efferent neurons of the lateral-line system and the VIII cranial nerve in the brainstem of anurans. Cell Tissue Res 225: 673–685.

    Article  PubMed  CAS  Google Scholar 

  • Withington-Wray DJ. Roberts BL. Taylor EW (1986) The topographical organization of the vagal motor column in the elasmobranch fish. Scyliorhinus canicula L. J Comp Neurol 248: 95–104.

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y (1973) Fine structure of the ordinary lateral line organ. I. The neuromast of lamprey. Entosphenus japonicus. J Ultrastruct Res 43: 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y. Hama K (1972) Fine structure of the lateral-line organ of the common eel. Anguilla japonica. Z Zellforsch 124: 454–464.

    Article  PubMed  CAS  Google Scholar 

  • Zottoli S. Van Home C (1983) Posterior lateral line afferent and efferent pathways within the central nervous system of the goldfish with special reference to the Mauthner cell. J Comp Neurol 219: 100–111.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Roberts, B.L., Meredith, G.E. (1989). The Efferent System. In: Coombs, S., Görner, P., Münz, H. (eds) The Mechanosensory Lateral Line. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3560-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3560-6_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8157-3

  • Online ISBN: 978-1-4612-3560-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics